Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Структурные средние. Для характеристики состава изучаемой совокупности пользуютсяструктурными величинами




Для характеристики состава изучаемой совокупности пользуются структурными величинами. Они бывают двух видов:

· Мода –наиболее часто встречающееся значение ряда (варианты). Мода применяется, например, при определении размера обуви, одежды, пользующейся наибольшим спросом у покупателей.

Для дискретных рядов мода – это вариант, имеющий наибольшую частоту.

При расчете моды для интервального ряда необходимо вначале определить модальный интервал, т.е. интервал, который имеет наибольшую частоту, а затем значение модального признака. В этом случае моду рассчитывают по следующей формуле:

хмо – нижняя граница модального интервала;

iмо - величина модального интервала;

fмо – частота, соответствующая модальному интервалу;

fмо-1 – частота, предшествующая модальному интервалу;

fмо+1 – частота интервала, следующего за модальным.

Мода определяет непосредственно размер признака, свойственный, хотя и значительной части, но все же не всей совокупности. Мода по своему обобщающему значению менее точна по сравнению со средней арифметической, характеризующей совокупность в целом с учетом всех без исключения элементов совокупности.

J производительность труда (руб) число рабочих

10-15 5

15-20 12

20-25 19

25-30 11

св. 30 8

Модальный интервал: 20-25

· Медиана – значение признака, которое делит численность ранжированного ряда на две равные части.

Для ранжированного ряда с нечетным числом единиц медианой будет являться вариант, расположенный в центре ряда. (J 4, 6, 7, 9, 11, 12. Медиана =7)

Для ранжированного ряда с четным числом единиц медиана определяется как среднее арифметическое из двух смежных вариант, находящихся в центре ряда. (J 4, 6, 8, 9,, 12, 13. Медиана=8,5)

В интервальных рядах для определения медианы необходимо:

1.расположить значение признака по ранжиру;

2.для ранжированного ряда определить сумму накопленных частот;

3.найти медианный интервал. Он будет находиться там, где полусумма накопленных частот больше или равна сумме частот. Медианным называется первый интервал, накопленная частота которого превышает половину общей суммы частот;

Значение медианы находится по формуле:

 

хме – нижняя граница медианного интервала;

iме – величина медианного интервала;

f /2 – полусумма частот ряда;

Sме-1 – сумма накопленных частот, предшествующих медианному интервалу;

fме – частота медианного интервала.

J тот же пример, что и для расчета моды

Сумма накопленных частот

Медианный интервал:20-25 (совпал с модальным)

Полусумма накопленных частот=55/2=27,5

Медиана не зависит ни от амплитуды колебаний ряда, ни от распределения частот в пределах двух равных частей ряда, поэтому ее применение позволяет получить более точные результаты, чем при использовании других форм средних.


Тема 5. Показатели вариации и анализ частотных распределений




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 408; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.