Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Показатели вариации. К абсолютным показателям вариации относятся:




К абсолютным показателям вариации относятся:

Размах вариации (R) определяется по формуле

R = .

Среднее квартильное отклонение () – рассчитывают по формуле

.

Среднее линейное отклонение () – рассчитывают по формулам

– для не сгруппированных данных;

– для сгруппированных данных.

Дисперсия () вычисляется по формулам

– для не сгруппированных данных;

– для сгруппированных данных.

Среднее квадратическое отклонени е () – вычисляется по формулам

– для не сгруппированных данных;

– для сгруппированных данных.

Показатель среднего квадратического отклонения используется при оценке меры риска при принятии финансово-экономических решений. Чем меньше величина σ, тем меньше возможный риск.

К относительным показателям вариации относятся:

коэффициент квартильной вариации ( )

= .

коэффициент осцилляции( )

= 100 (%).

коэффициент вариации ( )

.

Исходная совокупность считается однородной по изучаемому признаку, если коэффициент вариации не превышает 33%. Коэффициент вариации применяется при сравнении степени вариации в различных совокупностях.

Пример 10. По приведенным условным данным о размере и числе соответствующих штрафов вычислить показатели вариации.

 

Размер штрафа, руб. Число штрафов, единиц
80–100  
100–120  
120–140  
140–160  
160–180  
Итого  

Решение. Исходные данные являются сгруппированными, поэтому для расчета необходимых показателей будем применять взвешенные формулы. Все предварительные расчеты представим в следующей таблице:

           
             
80–100           4 050
100–120           3 750
120–140            
140–160     1 200     1 800
160–180           4 900
Итого     3 240     14 600

1. Размах вариации R = = 180 – 80 = 100 руб.

2. Средний размер штрафа руб.

3. Среднее линейное отклонение = =

4. Дисперсия = = 608,3.

5. Среднее квадратическое отклонение = = 24,66 руб. Это значит, что в среднем размер каждого штрафа отличается от среднего размера штрафа ( = 135 руб.) на 24, 66 руб.

6. Коэффициент вариации: = = 18,3 %.

Поскольку величина данного коэффициента меньше 33%, то можно сделать вывод об однородности исходной совокупности штрафов по их размеру.

Основные математические свойства дисперсии:

– дисперсия, рассчитанная по отношению к средней величине, является минимальной;

– дисперсия постоянной величины равна нулю;

– если все индивидуальные значения признака (варианты) увеличить (уменьшить) на какое-то постоянное число А, то дисперсия новой совокупности не изменится;

– если все индивидуальные значения признака (варианты) увеличить (уменьшить) в k раз (где k – постоянное число, отличное от нуля), то дисперсия новой совокупности увеличится (уменьшится) в k 2 раз;

– если вычислена дисперсия по отношению к числу В, отличному от средней величины, то дисперсию исходной совокупности можно рассчитать по соотношению:

;

– дисперсию исходной совокупности можно рассчитать как разность между средней квадратов признаков и квадратом средней величины:

.

 




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 716; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.