Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение: Числа и называются комплексно – сопряженными




Лекция № 9 Комплексные числа.

Цель: Рассказать о введении комплексного числа, о расширении поля действительных чисел до поля комплексных чисел. Научить выполнять действия над комплексными числами, переводить комплексные числа из одной формы в другую.

 

  1. Комплексные числа. Геометрическое изображение комплексных чисел.
  2. Действия над комплексными числами.
  3. Формы комплексных чисел.

 

1. Комплексные числа.

Определение: Комплексным числом z называется выражение , где a и b – действительные числа, i – мнимая единица, которая определяется соотношением:

При этом число a называется действительной частью числа z (a = Re z), а b - мнимой частью (b = Im z).

Если a =Re z =0, то число z будет чисто мнимым, если b = Im z = 0, то число z будет действительным.

Определение: Два комплексных числа и называются равными, если соответственно равны их действительные и мнимые части:

Определение: Комплексное число равно нулю, если соответственно равны нулю действительная и мнимая части

Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел.

Если любое действительное число может быть геометрически представлено в виде точки на числовой прямой, то комплексное число представляется точкой на плоскости, координатами которой будут соответственно действительная и мнимая части комплексного числа. При этом горизонтальная ось будет являться действительной числовой осью, а вертикальная - мнимой осью.

у

 

A(a, b)

 

 

r b

j

 

0 a x

Таким образом, на оси ОХ располагаются действительные числа, а на оси ОY – чисто мнимые.

С помощью подобного геометрического представления можно представлять числа в так называемой тригонометрической форме.

2. Действия с комплексными числами.

Основные действия с комплексными числами вытекают из действий с многочленами.

1) Сложение и вычитание.

2) Умножение.

В тригонометрической форме:

,

С случае комплексно – сопряженных чисел:

3) Деление.

В тригонометрической форме:

4) Возведение в степень.

Из операции умножения комплексных чисел следует, что

В общем случае получим:

где n – целое положительное число.

Это выражение называется формулой Муавра.

(Абрахам де Муавр (1667 – 1754) – английский математик)

Формулу Муавра можно использовать для нахождения тригонометрических функций двойного, тройного и т.д. углов.

5) Извлечение корня из комплексного числа.

Возводя в степень, получим:

Отсюда:

Таким образом, корень n – ой степени из комплексного числа имеет n различных значений.

3. Тригонометрическая форма числа.

Из геометрических соображений видно, что . Тогда комплексное число можно представить в виде:

Такая форма записи называется тригонометрической формой записи комплексного числа.

При этом величина r называется модулем комплексного числа, а угол наклона j - аргументом комплексного числа. .

Из геометрических соображений видно:

Очевидно, что комплексно – сопряженные числа имеют одинаковые модули и противоположные аргументы.

Показательная форма комплексного числа.

Рассмотрим показательную функцию

 

Можно показать, что функция w может быть записана в виде:

Данное равенство называется уравнением Эйлера. Вывод этого уравнения будет рассмотрен позднее. (См.).

Для комплексных чисел будут справедливы следующие свойства:

1)

2)

3) где m – целое число.

Если в уравнении Эйлера показатель степени принять за чисто мнимое число (х=0), то получаем:

Для комплексно – сопряженного числа получаем:

Из этих двух уравнений получаем:

 

Этими формулами пользуются для нахождения значений степеней тригонометрических функций через функции кратных углов.

Если представить комплексное число в тригонометрической форме:

и воспользуемся формулой Эйлера:

Полученное равенство и есть показательная форма комплексного числа.




Поделиться с друзьями:


Дата добавления: 2014-11-26; Просмотров: 378; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.