Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод четырехугольников без диагоналей




 

Сети четырехугольников без диагоналей, заполняя каркас, создают сплошную сеть (рис.49). Все пункты этой сети взаимно связаны и своей формой эта сеть напоминает строительную сетку. Так как диагональные направления не измеряются, то этот метод с успехом используется на застроенных и залесенных площадках.

 

Рисунок 49 – Схема построения четырехугольников без диагоналей

При расчете точности измерений в сети, уравненной между пунктами каркаса, можно использовать таблицу 7.

Таблица 7

Система построения Sx = Sy Q QSx Qax QSy Qay
3x3 3x4 3x5 4x3 4x4 4x5 5x3 5x4 5x5 0,59 0,67 0,71 0,76 0,67 0,81 0,71 0,81 0,86 0,60 0,76 0,84 0,59 0,76 0,84 0,59 0,77 0,86 0,41 0,41 0,41 0,44 0,45 0,45 0,46 0,47 0,47 0,59 0,59 0,59 0,72 0,76 0,77 0,84 0,84 0,86 0,41 0,44 0,46 0,41 0,45 0,47 0,41 0,45 0,47

 

Нормированные обратные веса вычислены для наиболее слабых элементов сети, независимо от конкретной длины ее сторон. При этом приняты следующие обозначения:

Q -корень из нормированного обратного веса положения пункта в самом слабом месте сети;

QSx, QSy - то же - для длин соответствующих сторон;

Qax, Qay - то же - для дирекционных углов этих сторон.

Переход к сети с конкретными длинами сторон осуществляется по формулам:

; ;

; ;

где mS2 и ma2 - требуемая точность длин сторон и дирекционных углов этих сторон.

В заполняющих сетях mS=10 мм, ma=10².

Из этих четырех значений выбирают минимальное и вычисляют ошибку положения пункта:

MII =K1× ma(min)× Q, K1 =S/r";

где S - длина стороны строительной сетки в мм.

 




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 1367; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.