КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Хемосинтез
Синтез органики может происходить не только за счет солнечного света, но и за счет ресурса, освоение которого не требует такой продвинутой антенной техники, как фотосистемы на основе пигментов сложного строения, – за счет энергии, запасенной в химических связях неорганических веществ. Это так называемый хемосинтез. Организмы, способные к хемосинтезу и не нуждающиеся во внешнем источнике органических веществ, называются хемоавтотрофы. Хемоавтотрофы встречаются только среди бактерий, причем в современном мире разнообразие хемосинтетических бактерий невелико. Они были открыты в конце XIX в. отечественным микробиологом С. Н. Виноградским. Однако, как и в случае с зелеными и пурпурными бактериями, многие бактерии, способные к хемосинтезу, все же нуждаются в определенных органических веществах и к автотрофам формально отнесены быть не могут. В то же время понятно, что принципиальна сама способность к хемосинтезу, которая может служить основой для становления хемоавтотрофии. Рассматривая варианты бактериального фотосинтеза, мы с вами коснулись вулканизма, имеющего прямое отношение к данной теме. И действительно, те же самые вещества, которые фототрофные бактерии использовали в качестве доноров электронов в ходе фотосинтеза, могут быть использованы хемоавтотрофами для получения энергии путем их окисления без привлечения энергии света. Хемоавтотрофные бактерии могут использовать в качестве источника энергии, т. е. в качестве восстановителей: 1) соединения серы; 2) водород; 3) соединения азота; 4) соединения железа; и предположительно: 5) карбонат марганца MnCO3 до оксида марганца Mn2O3; 6) оксид трехвалентной сурьмы Sb2O3, окисляя его до пятивалентной Sb2O5. Так называемые бесцветные серные бактерии развиваются в сероводородных источниках, в том числе и горячих (некоторые имеют температурный оптимум около 50 оС), и даже в источниках, представляющих собой слабую (вплоть до однонормальной, рН = 0) серную кислоту или насыщенный раствор поваренной соли. Некоторые из этих бактерий встречаются в почве, в месторождениях серы и в некоторых разрушающихся горных породах (способствуя их так называемому сернокислому выветриванию). Естественно, к разным условиям приспособлены разные виды этих бактерий. Многие из них не только способны окислять одно какое-то соединение серы, а последовательно повышать ее степень окисления, т. е. окислять сероводород (H2S) до молекулярной серы (S), а молекулярную серу – до тиосульфата (S2O3-), тиосульфат – до сульфита (SO3-), сульфит – до сульфата, т. е. серной кислоты (SO4-). При этом степень окисления серы увеличивается от –2 до +6. Немудрено, что для хемосинтеза выбран такой элемент, как сера, степень окисления которого способна варьировать в столь широких пределах. Некоторые способны окислять серу даже из нерастворимых сульфидов тяжелых металлов. Такие бактерии используются для разработки обедненных месторождений этих металлов. Воду с бактериями пропускают через измельченную руду, представленную сульфидами, и собирают ее, обогащенную сульфатами соответствующих металлов. Как мы знаем, все, что нам нужно от любых источников энергии, это получить АТФ. Получение АТФ на основе восстановления серы может идти двумя путями. Самый поразительный путь – почти прямой. Он реализуется как минимум при окислении сульфита. Сульфит взаимодействует с АМФ с образованием аденозинфосфосульфата (АФС). Именно в этой реакции степень окисления серы меняется с +4 до +6, причем высвободившиеся электроны передаются в цепь переноса электронов для окислительного фосфорилирования. Молекула АФС, в свою очередь, заменяет сульфатную группу на остаток свободной фосфорной кислоты из раствора с образованием АДФ, тогда как сульфат высвобождается в раствор. (На всякий случай напомним, что каждая такая реакция катализируется специальным ферментом.) АДФ уже содержит одну макроэргическую связь. Фермент аденилаткиназа из двух молекул АДФ делает одну молекулу АТФ и одну АМФ. Мы видим здесь простейший из всех рассмотренных нами путей синтеза АТФ – всего в три этапа. Фермент катализирует соединение непосредственного источника энергии – соединения серы – с АМФ, а следующий фермент – замещение остатков одной кислоты на другую с образованием АТФ. Отнятые у серы электроны могут направляться в цепь переноса и без фосфорилирования АМФ – в этом случае окисление серы производится непосредственно одним из цитохромов. Как видим, в обоих процессах задействовано окислительное фосфорилирование, требующее свободного кислорода. Поэтому бактерии-хемосинтетики – это, как правило облигатные аэробы. Данный пример нам показывает, что: 1) пути получения АТФ при хемосинтезе отличаются разнообразием и 2) среди них есть и очень простые; возможно, они эволюционно возникли самыми первыми. Кстати, КПД хемосинтеза на основе серы невысок – при нем используется от 3 до 30 % энергии, заключающейся в восстановленных формах серы. Чтобы окислять серу и извлекать из одного этого энергию без привлечения ее дополнительных источников, современные хемосинтетические бактерии нуждаются в сильном окислителе, и им является кислород. Это или молекулярный кислород воздуха, или кислород нитратов (NO3-). Как вы знаете, нитраты, т. е. селитра, очень хороший окислитель и используется при изготовлении пороха. Бактерии, использующие в качестве единственного источника энергии окисление водорода, – водородные бактерии, живут в почве и водоемах. Окисление водорода происходит через цитохромы с использованием цепи переноса электронов, т. е. с использованием молекулярного кислорода как акцептора электронов. Таким образом, для жизни этих бактерий необходимо присутствие в среде не только водорода, но и кислорода – фактически они живут на гремучей смеси и используют энергию, которая могла бы выделиться в результате сгорания водорода. Это довольно большая энергия, и используют они ее достаточно эффективно – до 30 %. Общее уравнение водородного хемосинтеза таково, что на шесть молекул окисленного водорода приходится одна фиксированная в синтезируемых органических соединениях молекула СО2. Любопытно, что водород, используемый водородными бактериями, выделяется в качестве побочного продукта жизнедеятельности другими бактериями – обычными гетеротрофными, которые используют в качестве источника энергии готовую органику. Одновременное присутствие водорода и кислорода – опять-таки очень редкая экологическая ситуация. Возможно, именно поэтому все водородные бактерии могут усваивать уже готовые биологические органические вещества Хемосинтез на основе азота осуществляют нитрифицирующие бактерии. Как вы знаете, азот, как и сера, относится к элементам, легко меняющим степень окисления. Имеется две группы нитрифицирующих бактерий. Одна восстанавливает аммоний (NH4+) до нитритов (NO2-), при этом степень окисления азота меняется с –3 до +3. Вторая группа окисляет нитриты до нитратов (NO3-), повышая степень окисления азота до +5. Все нитрифицирующие бактерии – облигатные аэробы. Электроны от азота передаются в цепь переноса электронов посредством флавопротеина (содержащего флавин) либо через цитохромы. Имеются также бактерии, способные окислять двухвалентное железо до трехвалентного. Из них способность к автотрофному существованию доказана только для нескольких видов, являющихся одновременно серными бактериями и способных окислять молекулярную серу и различные ее соединения с кислородом и тяжелыми металлами. Общее уравнение хемосинтеза в этом случае выглядит так:
4Fe2+SO4 + H2SO4 +O2 = 2Fe3+2(SO4)3 + 2H2O.
Такие бактерии, живущие в болотах, образуют болотные месторождения железа. Все рассмотренные хемоавтотрофы получают энергию путем окисления неорганических веществ и запасают ее в виде молекул АТФ. Энергия, запасенная в АТФ, используется ими для фиксации углекислоты и построения биологических органических молекул. Для этого все они используют уже рассмотренный нами цикл Кальвина. Вспомним, однако, что в этом цикле, помимо АТФ, необходим еще и НАДФ-Н. В то же время энергетического выигрыша от окисления всех используемых для хемосинтеза веществ недостаточно для восстановления НАДФ-Н из НАДФ+. Поэтому его восстановление идет в виде отдельного процесса с затратой части АТФ, полученной в ходе хемосинтеза. Итак, хемосинтез представляет заманчивую возможность использования энергии неорганических соединений элементов, которые легко меняют степень своего окисления, для получения АТФ и синтеза органических веществ путем фиксации углекислого газа. Отметим, однако, четыре обстоятельства. 1. Большинство известных случев хемоавтотрофии требуют свободного кислорода в качестве окислителя, в редких случаях он замещается кислородом нитратов. А как вы помните, кислород в атмосфере является продуктом фотосинтеза. Все это означает, что с точки зрения геохимического круговорота веществ хемосинтез на Земле сейчас вторичен по отношению к фотосинтезу. 2. Такие вещества, как аммиак, сероводород и водород часто сами образуются в результате жизнедеятельности бактерий, правда совсем других, которые используют для получения энергии и построения вещества своего тела такой эффективный ресурс, как уже готовая органика. Таким образом, во многих случаях за счет хемоавтотрофов общее количество органики не прирастает. Они просто являются элементами общей цепи ее расщепления, включающей множество микроорганизмов – просто на этом этапе добавляется локальный ресинтез органики из СО2 за счет энергии каких-то промежуточных соединений, образованных в процессе ее глобального разложения. 3. Преобладающий в настоящее время на планете тип хемосинтеза - окисление сероводорода вулканического происхождения. 4. Кислород воздуха легко окисляет сероводород «самостоятельно», без помощи микроорганизмов. Поэтому эти два газа почти не встречаются вместе. К примеру, глубинные слои почвы характеризуются восстановительной средой, там есть метан и сероводород, но нет кислорода. Восстановительная среда сменяется окислительной, где присутствует кислород, но нет сероводорода – в очень узком слое, здесь есть оба газа – буквально несколько миллиметров. Именно и только там и могут развиваться почвенные хемосинтетические серобактерии. (Еще более экзотично одновременное присутствие кислорода и водорода.) Однако на планете есть места, где оба газа – сероводород и кислород – присутствуют в достаточных концентрациях одновременно. И даже в настоящий момент большое количество органики образуется там в результате хемосинтеза. Давайте выясним, откуда вообще берется вулканизм. Вы слышали о дрейфе континентов? Кто не слышал, вспомните карту мира и обратите внимание на то, что, если Африку сдвинуть на запад, ее очертания очень хорошо впишутся в берега обеих Америк. Да, континенты медленно плывут! Африка и Америки раскололись и плывут друг от друга. Азия и Северная Америка плывут навстречу друг другу. Индия относительно недавно откололась от Африки, рванулась на северо-восток и врезалась в Азию. В результате в месте столкновения выросли Гималаи и Тибет, а недавнее землетрясение на Алтае произошло оттого, что она все еще не может остановиться. Земная кора под океанами гораздо тоньше, чем под континентами. Континенты плавают по ней как льдины. Когда континенты наступают на океан, как, например, Евразия и Америка на Тихий, происходит субдукция – континенты подминают под себя земную кору, она погружается в мантию и расплавляется. Именно в зонах субдукции – например по всей периферии Тихого океана – имеет место вулканизм, который достаточно легко наблюдать в виде вулканов и горячих источников, богатых серой, в которных мы находим хемосинтезирующие бактерии. Там же, где континенты расходятся, а океан раскрывается, как, например, Атлантический, континенты растаскивают океаническую земную кору за собой. В результате посередине океана имеется трещина – рифтовая зона, по которой из мантии поднимается расплавленная магма, застывает и образует новую океаническую кору. Это область скрытого от наших глаз, но гораздо более мощного вулканизма. По сторонам трещины вырастают подводные вулканические горы, а сама трещина все же выглядит как впадина между двумя горными цепями. Это называется – срединный океанический хребет. Здесь имеется множество истечений вулканических газов, богатых соединениями серы и углекислым газом. Они получили название черных курильщиков. Почему курильщиков и почему черных? Соединения серы с металлами – сульфиды – как правило, окрашены в черный цвет. (Кстати, кто знает, почему море Черное? Потому что на определенной глубине его вода насыщена сероводородом и все металлические предметы там чернеют.) Источники рифтовой зоны выбрасывают очень много сульфидов, растворенных и взвешенных в горячей воде – такие струи отдаленно напоминают клубы черного дыма, а выпавшие в осадок сульфиды образуют вокруг источников причудливые постройки высотой в несколько десятков метров. В Черном море не идет активный хемосинтез, так как на той глубине практически нет кислорода – все это потому, что его конфигурация способствует застою воды. А в рифтовых зонах океанов вода подвижна и кислород есть. Немаловажно, что черный курильщик подогревает воду и тем приводит ее в движение, способствующее газообмену. Этот ресурс не проходит незамеченным для морских обитателей, поэтому вокруг черных курильщиков формируются процветающие сообщества морских организмов. Их основу составляют хемосинтетические бактерии, которые покрывают эти самые сульфидовые постройки черных курильщиков ровным слоем. Там идет интенсивнейший хемосинтез, в ходе которого большие количества углекислого газа фиксируются и переходят в биологические органические молекулы. В рифтовой зоне Тихого океана, на периферии черных курильщиков располагаются колонии совершенно поразительных животных – вестиментифер. Их открыли всего около 20 лет назад, сейчас известно десятка два видов. Они представляют собой нечто вроде червей длиной от 15–30 см до 2,5 м, живущих в трубках, через открытый конец которых высовывается венец алых щупалец (рис. 6.11). Они принадлежат к особому семейству многощетинковых кольчатых червей – сибаглидам, хотя весьма и отичаются от остальных кольчатых червей по строению тела; это семейство раньше даже считались отдельным типом – погонофорами. У них хорошо развита кровеносная система, но нет ни рта, ни кишечника. Вдоль тела у них проходит так называемая трофосома (по-гречески трофос – питание, сома – тело) – тяж, состоящий из особых клеток и кровеносных сосудов. Внутри клеток находятся хемосинтезирующие серные бактерии – только одного вида (из около двухсот во внешней среде курильщиков). Они окисляют сероводород до серной кислоты (которая нейтрализуется карбонатами). Вестиментиферы самопереваривают часть этих своих клеток и таким образом питаются. Спрашивается, а как сероводород попадает в трофосому? Он транспортируется туда гемоглобином крови вместе с кислородом. Кислород связывается с гемом, сероводород – с белковой частью гемоглобина. Красные (от гемоглобина) щупальца служат жабрами – они поглощают кислород и сероводород. Таким образом, вестиментиферы существуют за счет симбиоза – взаимовыгодного сожительства с организмами другого типа. И строят свое тело из органики, полученной в результате хемосинтеза (но с использованием хемосинтетического кислорода). В колониях вестиментифер за счет хемосинтетической органики (в основном просто питаясь вестиментиферами) живут крабы, креветки, усоногие ракообразные, двустворчатые моллюски, осьминоги, рыбы и т. п. И заметьте, никаких растений! Только бактерии и животные. Напомним, что на этих глубинах солнечный свет полностью отсутствует. Все это соседствует с практически безжизненными океанскими глубинами, куда почти не достигает фотосинтетическая органика, поступающая с океанской поверхности, поскольку почти вся она утилизируется микроорганизмами по дороге. Там донная биомасса составляет всего 0,1–0,2 г / м2 (оценка плотности биомассы возле курильщиков мне не встречалась, но она на несколько порядков больше). Такое буйство жизни возможно потому, что за счет конвекционного перемешивания в черных курильщиках имеется довольно широкая зона вод, в которых присутствует одновременно и сероводород, и кислород, тогда как зона одновременного присутствия этих газов в почве составляет всего несколько миллиметров. Геологи давно находили загадочные трубки в месторождениях серебряных, медных и цинковых руд, которые образовались 350 млн лет назад. Месторождения формировались из сульфидов рифтовой зоны. Вестиментиферы тогда уже были. Для сравнения: динозавры вымерли 65 млн лет назад. Сделаем одно отступление. Несколько раньше вестиментифер были открыты их родственники – погонофоры – в основном глубоководные морские организмы схожего строения. Вместо трофосомы у них имеется так называемый срединный канал – нечто вроде закрытого с обоих концов кишечника. В нем тоже живут симбиотические бактериии, но не хемосинтетические, а метанотрофные. Они «питаются» метаном (CH4). А что мы знаем о метане? Это один из основных компонентов природного газа. Судя по всему, погонофоры живут в районах расположения подводных месорождений нефти и газа и могут на них указывать. Что характерно, в рифтовой зоне Атлантического океана вестиментифер нет. Скорее всего они просто не успели туда попасть за время существования этого океана. Зато там, как и в Тихом океане, имеются: 1) креветки, у которых сероводородные симбионтные бактерии живут на поверхности ротовых конечностей; 2) двустворчатые моллюски, у которых они живут в жабрах; 3) ярко-красные многощетинковые черви, у которых они живут на поверхности тела (причем червь может их каким-то образом усваивать через поверхность). Как сказано ранее, все организмы сообщества черных курильщиков сделаны из органики, полученной из углекислого газа вулканического происхождения посредством энергии соединений серы вулканического же происхождения. Однако, поскольку все они (включая бактерии) использовали в качестве окислителя свободный кислород, все же нельзя сказать, что они существуют независимо от фотосинтеза. Де-факто в жизнь этих экосистем на паритетных началах вложились хемосинтез и фотосинтез. Недра Земли доставили в эти экосистемы восстановитель, а Солнце (через фотосинтезирующие растения) – окислитель. Надо заметить, что источник окислителя – более молодой, чем источник восстановителя. Энергия Солнца берется из термоядерного синтеза гелия из водорода. Энергия же химических соединений недр Земли была запасена в них, грубо говоря, при формировании Земли, а она формировалась из космического газа и пыли одновременно с Солнцем, в составе Солнечной системы в целом. Солнце – звезда второго поколения, следовательно, Солнечная система, включая землю, сформировалась в результате конденсации вещества, выброшенного при взрывах сверхновых звезд первого поколения.
Дата добавления: 2014-11-16; Просмотров: 2041; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |