КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. 1. Сечение составлено из стандартных профилей, главные центральные моменты инерции которых приводятся в таблицах ГОСТ
1. Сечение составлено из стандартных профилей, главные центральные моменты инерции которых приводятся в таблицах ГОСТ, см. Приложение 1. Для двутавра № 14 по ГОСТ 8239-89 Jox 1 = 572 см4. Для швеллера № 16 по ГОСТ 8240-89 Jox 2 = 757 см4. Площадь А2 = 18,1см2, Joy2 = 63,3см4. 2. Определяем координату центра тяжести швеллера относительно оси Ох. В заданном сечении швеллер повернут и поднят. При этом главные центральные оси поменялись местами. у2 = (h1/2) + d2 — zo2, по ГОСТ находим h1 = 14 см; d2 = 5 мм; zo = 1,8 см. Момент инерции сечения равен сумме моментов инерции швеллеров и двутавра относительно оси Ох. Используем формулу моментов инерции относительно параллельных осей: В данном случае
Пример 3. Для заданного сечения (рис. 2.45) вычислить главные центральные моменты инерции. Решение
Сечение имеет две оси симметрии, которые являются его главными центральными осями. Разбиваем сечение на две простейшие фигуры: прямоугольник (I) и два круга (II). Момент инерции сечения относительно оси х где
Ось x (центральная ось сечения) не является центральной осью круга. Следовательно, момент инерции круга следует вычислять по формуле где Подставляя значения Jx’’, a, F" в формулу, получаем Тогда Ось у является центральной для прямоугольника и кругов. Следовательно,
Пример 4. Для заданного сечения (рис.2.46)определить положение главных центральных осей и вычислить главные центральные моменты инерции.
Дата добавления: 2014-11-18; Просмотров: 1909; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |