КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сосуды и сосудистая оболочка глазного яблока. Рис. 3.8.42. Схема изменения геометрии глаза при расслаблении ресничной мышцы (о, б) и аккомодации (в
В Рис. 3.8.42. Схема изменения геометрии глаза при расслаблении ресничной мышцы (о, б) и аккомодации (в, г) (по Rohen, 1979): I — система фибрилл зонулярного аппарата; 2 — радужная оболочка; 3 — роговица; 4 — шлеммов канал; 5 — хрусталик; 6 — ресничная мышца; 7 — волокна передней части цинновой связки; 8 — волокна задней части цинновой связки. Стрелка указывает направление движения ресничной мышцы в процессе аккомодации. Ресничная мышца при сокращении смещает внутренний край ресничного тела по направлению экватора хрусталика. При этом волокна передней цинновой связки расслабляются и хрусталик принимает более сферическую форму (пунктирная линия). Сосудистая оболочка подтягивается к центру и кпереди Другие исследователи считают, что различная степень изменения кривизны передней и задней поверхностей хрусталика связана с неодинаковой толщиной капсулы хрусталика в различных местах [314]. Coleman [207, 208] предложил «гидравлическую теорию». По его мнению, меньшее изменение кривизны задней поверхности хрусталика при аккомодации связано с наличием давления на него стекловидного тела. Тем не менее Fisher [323] предполагает, что стекловидное тело не влияет на этот процесс. По его мнению, способность хрусталика к деформации всецело зависит от его физических свойств. Причем способность к деформации существенно отличается в центральной и экваториальной плоскостях хрусталика. При сокращении ресничной мышцы происходит и ряд других структурных изменений в переднем отделе глаза. Так, сокращение части мышцы, прикрепляющейся к склеральной шпоре, приводит к расширению межтрабекулярных пространств, что способствует усилению фильтрации камерной влаги [412, 413, 676—679]. Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА
Способствует этому процессу и то, что в склеральной шпоре обнаружены сократительные клетки — миофибробласты [1009, 1066]. Необходимо еще остановиться и на возрастных изменениях структуры ресничной мышцы, видимо, играющих определенную роль в развитии довольно распространенного нарушения рефракции, называемого пресбиопией. Пресбиопией называется состояние, характеризующееся снижением объема или величины аккомодации, развивающееся с возрастом и сопровождающееся уменьшением ближайшей точки ясного зрения. При этом точка дальнего видения не изменяется. Уменьшается также скорость (время) аккомодации и дисаккомо-дации. Объем аккомодации изменяется в довольно широких пределах. Так, у молодых людей он равен 10—12 диоптрий и уменьшается к 50 годам до 2 диоптрий [159, 438, 606]. На протяжении многих десятилетий рассматриваются две причины пресбиопии. Это изменение функциональной активности ресничной мышцы и изменение упругости хрусталика. Первоначально мы остановимся на значении в этом процессе ресничной мышцы. Начиная с первого месяца жизни и на протяжении всего первого десятилетия, количество волокон ресничной мышцы увеличивается. Начиная с 10-летнего возраста вплоть до 60 лет, нарастает количество соединительной ткани с прогрессивным замещением волокон особенно в задних отделах мышцы. По этой причине мышца постепенно утолщается в передней своей части. Выявлено также прогрессирующее уменьшение длины меридианальной части мышцы. После 60 лет продольные и радиальные части мышцы атрофируются, в то время как масса циркулярной части увеличивается [294, 1068]. Важно отметить, что несмотря на постоянно протекающий процесс уменьшения объема мышцы и количества мышечных волокон, сила мышечного сокращения с возрастом увеличивается. Так, по данным Fisher [322], в возрасте 50 лет ресничная мышца на 50% мощнее, чем у молодых. Несмотря на это, скорость аккомодации ниже. Именно по этой причине ряд исследователей считают, что более вероятной и основной причиной пресбиопии является склероз задних «сухожилий» ресничной мышцы [1066, 1068]. Это связывают с тем, что склероз задних «сухожилий» ограничивает переднее внутреннее смещение ресничной мышцы. Именно смещение ресничной мышцы в указанном направлении абсолютно необходимо для достижения расслабления зонулярного аппарата. Показано, что степень склеротических изменений коррелирует с выраженностью изменения объема аккомодации, уменьшением реакции мышцы на пилокарпин [677—679]. При этом каких-либо существенных изменений плотности нервных окончаний в ресничной мышце не обнаруживается. Вторая теория пресбиопии основной причиной ее развития считает изменения эластичности хрусталика. Так, еще в 1855 г. Helmholtz считал, что пресбиопия развивается в результате недостаточной способности хрусталика к деформации. Действительно, с возрастом хрусталик увеличивается в объеме, увеличивается его масса и уменьшается эластичность. Таким образом, на настоящий момент времени целесообразно рассматривать как равноценные обе теории развития пресбиопии [950]. Кровоснабжение ресничного тела (рис. 3.8.17, 3.8.43—3.8.47). Сосудистое сплетение отростков ресничного тела (рис. 3.8.43—3.8.45). Артериолы ресничных отростков исходят из большого круга кровообращения радужки и переходят в широкие венулы. Капилляры находятся в плотном контакте с базальной мембраной клеток пигментного эпителия (рис. 3.8.37). Ширина капилляров приближается к ширине вен и напоминает хо-риокапилляры сосудистой оболочки. Диаметр их равен 15—30 мкм, стенка фенестрирова-на (30—-100 нм) и проницаема для воды и белков плазмы. Специализированные соединения по строению идентичны соединениям, обнаруживаемым в капиллярах сосудистой оболочки [875]. Капилляры, снабжающие ресничную мышцу, встречаются реже. Их диаметр меньше, а эндотелиальные клетки толще. Капилляры постепенно переходят в венулы. Рис. 3.8.43. Схематическое изображение архитектуры крупных сосудов переднего отдела глаза (по Funk, Rohen, 1990): вид снаружи. Лимбальная область и склера удалены для показа сосудов ресничного тела и радужки (/ — передняя ресничная артерия; 2 — интрамуральный круг кровообращения; 3 — задняя длинная ресничная артерия; 4 — передняя ресничная артерия; 5—возвратная хориоидальная артерия; 6 —прямые артерии радужки, исходящие из задней длинной ресничной артерии; 7 — прямые артерии радужки, исходящие из передней ресничной артерии; 8 —интерсклеральная лимбальная артерия) Высокая пропускная способность стенок капилляров ресничного тела позволяет белкам плазмы свободно диффундировать и распределяться в строме ресничного тела, а затем и в строме радужки. Поскольку строма ресничного тела примыкает к передней камере глаза, становится понятным, почему белки плазмы обнаруживаются и в камерной влаге, правда, в небольших концентрациях [875]. Различают три территории кровоснабжения [363] (рис. 3.8.43—3.8.47). Первая сосудистая территория находится в Рис. 3.8.44. Схематическое изображение сосудистой сети ресничного тела передней глубокой части / — наружная задняя часть; 2 — внутрення передняя зона; 3 — артерии радужки; 4 — ве- ресничного отростка. v^,o- нулы радужки; 5 — первая сосудистая территория; 6—вторая сосудистая территория; СТОИТ ОНЯ ИЗ ЗртерИОЛ, 7 —третья сосудистая территория формирующих КЭПИЛЛЯр- ную сеть. Венулы разворачиваются и идут к основанию отростков (рис. 3.8.44). Вторая сосудистая территория обнаруживается в передней части больших отростков и состоит из двух компонентов. Основная капиллярная сеть находится центрально и в глубине ресничного отростка, а кровь из нее оттекает в более поверхностно расположенную капиллярную сеть, а оттуда в венулы. Поверхностная капиллярная сеть — образует почти прямую связь между артериолой и большой краевой венулой, расположенной сагиттально во внутреннем крае ресничного отростка и формирующей отводящий венозный сегмент. Она впадает в венулу плоской части ресничного тела. Третья сосудистая территория состоит из капиллярных сетей маленьких ресничных отростков и сосудов задней трети больших отростков. Кровь оттекает в краевую (маргиналь-Рис. 3.8.45. Схема сосудистой системы ресничных от- НУЮ) венулу и, частично, в базальную.
Исследования у обезьян и кроликов показывают, что просвет терминальных артериол, кровоснабжающих первую и вторую сосудистые территории, при применении адренэргичес- ляры. Каждый ресничный отросток кровоснабжается передними ких наркОТИКОВ СужаеТСЯ. Первая Территория l^Z'^^^m^^^o^Z^^ZJ^^ функционально отличается от других меньшей женными просветами, кровоснабжают переднюю часть реснич- УСТОЙЧИВОСТЬЮ К факторам, нарушающим гема- ного отростка, формируя большие, неравномерно расширенные тО-офтаЛЬМИЧеСКИЙ барьер, ТЭКИМ, например, капилляры, напоминающие вены и отводящие кровь в ------ г г K^Jdebbie каниллнры, напиминающис вены и ишиднщис кривь в ГОСО ОС/11 вены хориоидеи. Задние артериолы с менее расширенными про- КЭК ПЭрацеНТеЗ [ои/, o04j.
светами обеспечивают кровообращение основания отростков. Оба уровня, отдавая боковые артериолы, формируют сосудистую сеть (область круга). Из нее часть капилляров повтор-но проникает в ресничный отросток, образуя соединительные регуЛЯЦИИ. ВенОЗНЫИ ДреНЭЖ ЭТОЙ Территории артериолы, направленные кпереди и кзади. Другие капилля- ОТНОСИТеЛЬНО обособлен ОТ ДВуХ друГИХ тер-
^'овТ^р^Гв^Г^риГеи^Г^б^г/ГлГстьГТе" Р^рий как у человека, так и у обезьяны ничные отростки Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА
Рис. 3.8.46. Сканирующая электронная микроскопия сосудистой сети ресничного тела (по Funk, Rohen, 1990): а — вид внутренней поверхности. Строение первой (а), второй (Ь) и третьей (с) сосудистых территорий (стрелки указывают на краевые венулы внутреннего края ресничных отростков); б— вид сбоку. Краевая венула внутреннего края ресничных отростков (стрелка указывает на венулу третьей сосудистой территории); в, г — вид спереди. Круг расположен в области большого ресничного отростка (/ — большой артериальный круг радужки; стрелка — первая сосудистая территория; * — венула этой территории) В ресничных отростках человека имеется еще один путь оттока, предлагающий быстрое отведение крови с высокой венозной концентрацией кислорода и высоким венозным давлением. Предполагают, что эта система участвует в механизмах фильтрации камерной влаги. Кровоснабжение ресничной мышцы. Передняя и внутренняя части ресничной мышцы обеспечиваются кровью большим кругом кровообращения радужки, в то время как внешняя и задняя части — внутримышечным кругом кровообращения ресничного тела. Большой круг сформирован в основном длинными задними ресничными артериями, в то время как внутримышечный круг — ветвями передних ресничных артерий. Эти две системы анастомозируют между собой [363] (рис. 3.8.43). Иннервация ресничного тела. Задние длинные ресничные нервы отдают первые ветви в наружном слое переднего отдела сосудистой оболочки, где формируется мощное сплетение миелинизированных и немиелинизированных нервных стволов, сопровождающееся многочисленными ганглиозными клетками. Часть гангли-озных клеток лежит и среди мышечных волокон, а также вдоль внутреннего тела ресничной мышцы. Ганглиозные клетки отдают многочисленные цитоплазматические отростки, распределяющиеся в окружающих тканях ресничного тела и стромы радужной оболочки. Парасимпатические волокна. Парасимпатические волокна, берущие свое начало в ядре Якубовича—Эдингера—Вестфаля, подходят к глазному яблоку вместе с ветвями глазодвигательного нерва. Эти волокна смешанные. Тела большинства нейронов располагаются в ресничном ганглии. Эти волокна образуют обширное сплетение, расположенное в пределах ресничной мышцы. Парасимпатические волокна ин-нервируют сфинктер и ресничную мышцу. Эктопически расположенные ганглиозные клетки обнаруживаются в области сплетения ресничного тела [154, 160], вдоль задних длинных ресничных нервов, а также между ресничным ганглием и глазным яблоком. Симпатические волокна. Симпатические волокна берут свое начало в шейном симпатическом узле. Эти волокна подходят к ресничному телу и радужке посредством длинных ресничных нервов [941]. Симпатические волокна, сопровождающие ресничные артерии, довольно широко распределены в пределах ресничных сплетений. Сенсорные волокна. Свое начало сенсорные волокна берут от носоресничного нерва (п. па- Рис. 3.8.47. Распределение кровеносных сосудов в ресничном теле и радужной оболочке: инъекция сосудистого русла китайской тушью. Определяется крупный артериальный ствол, относящийся к большому кругу кровообращения радужной оболочки, и множество капиллярных сосудов ресничного тела и радужной оболочки Сосуды и сосудистая оболочка глазного яблока
sociliaris). Эти волокна поступают в ресничное тело и заканчиваются в радужке, роговице и ресничной мышце. У 12% людей в области склерального канала обнаруживаются петли ресничного нерва (интрасклеральная петля нерва Аксенфельда (Axenfeld)). Размер их 1—2 мм. Это происходит в месте перфорации склеры передними ресничными артериями [948]. Нервные волокна проходят от сплетения между склерой и стромой ресничного тела и формируют обширное сплетение в пределах ресничной мышцы. В дальнейшем от этого сплетения отходят волокна и образуют еще одно сплетение, иннервирующее ресничный эпителий. Терминалы нервов видны как вблизи клеток пигментного эпителия, так и капилляров ресничного тела. Некоторые терминалы относятся к парасимпатической нервной системе, а некоторые к адренэргическим [154]. Иннервация ресничной мышцы. Ресничная мышца иннервируется исключительно большим количеством нервных волокон [154, 523, 1065]. Каждая отдельная мышечная клетка окружена примерно до 10—15 нервными окончаниями, ширина которых 0,5—1,0 мкм. Эти окончания специфически окрашиваются на синаптофизин. Волокна начинаются в нейронах ядра Якубовича—Эдингера—Вестфаля и образуют синапсы в ресничном ганглии [948, 1147]. Плотность мускариновых и холинэргических окончаний нервов значительно больше, чем в других тканях [95]. Симпатическая иннервация имеет меньшее физиологическое значение. В терминалах нервов выявлены нитрэргические и пептидэрги-ческие нейротрансмиттеры. В дополнение к вегетативной иннервации в области ресничной мышцы определяется также скопление ганглиозных клеток (plexus ganglio-sus ciliaris) [160, 182, 611, 618, 1063, 1064]. Лежат скопления ганглиоцитов между связками продольной и циркулярной частей ресничной мышцы. Они обычно располагаются изолированно и очень редко образуют группу из 2—3 клеток. Различают маленькие ганглиозные клетки (70%), диаметр которых равняется 10—14 мкм, и большие (30%), с диаметром 30 мкм. Ганглиозные клетки ресничного тела меньше, чем ганглиозные клетки других органов [130, 154, 486, 1125]. Ганглиозные клетки и аксоны относятся к нитрэргическим и положительно окрашиваются при проведении реакции на НАДФ-диафоразу. Функция ганглиозных клеток ресничного тела еще не полностью понятна. Нитрэргические волокна нервного сплетения, возможно, служат для расслабления ресничной мышцы [1169], обеспечивая дисаккомодацию. Предполагают, что активное расслабление вносит вклад в аккомодацию [174, 1063, 1064]. Определяется периваскулярная сеть из нитр-эргических волокон в пределах круглой части ресничной мышцы, связанных с ганглиозным сплетением. Пептидэргические нейроны также найдены в тройничном ганглии [116].
Дата добавления: 2014-11-18; Просмотров: 574; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |