КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение прямой. Условия параллельности и перпендикулярности прямых
Ряды. Радиус сходимости. Абсолютная и условная сходимость. Числовой ряд — это числовая последовательность, рассматриваемая вместе с другой последовательностью, которая называется последовательностью частичных сумм (ряда). Рассматриваются числовые ряды двух видов · вещественные числовые ряды — изучаются в математическом анализе; · комплексные числовые ряды — изучаются в комплексном анализе; Важнейший вопрос исследования числовых рядов — это сходимость числовых рядов. Числовые ряды применяются в качестве системы приближений к числам В декартовых координатах каждая прямая определяется уравнением первой степени и, обратно, каждое уравнение первой степени определяет прямую. Уравнение вида (1) называется общим уравнением прямой. Угол , определяемый, как показано на рис., называется углом наклона прямой к оси Ох. Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом прямой; его обычно обозначают буквой k: Уравнение называется уравнением прямой с угловым коэффициентом; k - угловой коэффициент, b - величина отрезка, который отсекает прямая на оси Оу, считая от начала координат. Если прямая задана общим уравнением , то ее угловой коэффициент определяется по формуле . Уравнение является уравнением прямой, которая проходит через точку (, ) и имеет угловой коэффициент k. Если прямая проходит через точки (, ), (, ), то ее угловой коэффициент определяется по формуле . Уравнение является уравнением прямой, проходящей через две точки (,) и (, ). Если известны угловые коэффициенты и двух прямых, то один из углов между этими прямыми определяется по формуле . Признаком параллельности двух прямых является равенство их угловых коэффициентов: . Признаком перпендикулярности двух прямых является соотношение , или . Иначе говоря, угловые коэффициенты перпендикулярных прямых обратны по абсолютной величине и противоположны по знаку.
Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами. Пример: – функция двух переменных. Иногда используют запись . С геометрической точки зрения функция двух переменных чаще всего представляет собой поверхность трехмерного пространства (плоскость, цилиндр, шар, параболоид, гиперболоид и т. д.). Но, собственно, это уже больше аналитическая геометрия, а у нас на повестке дня математический анализ, который Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной. Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас: Пример 1 Найти частные производные первого и второго порядка функции Сначала найдем частные производные первого порядка. Их две. Обозначения: Начнем с . Когда мы находим частную производную по «икс», то переменная считается константой (постоянным числом). Решаем. На данном уроке я буду приводить полное решение сразу, а комментарии давать ниже. Комментарии к выполненным действиям: (1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом. Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если Вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность). Далее данный шаг комментироваться не будет, все сделанные замечания справедливы для любого примера по рассматриваемой теме. (2) Используем правила дифференцирования , . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной, то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки». (3) Используем табличные производные и . (4) Упрощаем, или, как я люблю говорить, «причесываем» ответ. Теперь . Когда мы находим частную производную по «игрек», то переменная считается константой (постоянным числом). (1) Используем те же правила дифференцирования , . В первом слагаемом выносим константу за знак производной, во втором слагаемом ничего вынести нельзя поскольку – уже константа. (2) Используем таблицу производным элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива и для (да и вообще почти для любой буквы). В частности, используемые нами формулы выглядят так: и . Итак, частные производные первого порядка найдены Подведем итог, чем же отличается нахождение частных производных от нахождения «обычных» производных функции одной переменной: 1) Когда мы находим частную производную , переменная считается константой. 2) Когда мы находим частную производную , переменная считается константой. 3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (, либо какой-нибудь другой), по которой ведется дифференцирование. Шаг второй. Находим частные производные второго порядка. Их четыре. Обозначения: В понятии второй производной нет ничего сложного. Говоря простым языком, вторая производная – это производная от первой производной. Для наглядности я перепишу уже найденные частные производные первого порядка: Сначала найдем смешанные производные: Как видите, всё просто: берем частную производную и дифференцируем ее еще раз, но в данном случае – уже по «игрек». Аналогично: В практических примерах можно ориентироваться на следующее равенство: Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка. Находим вторую производную по «икс». Аналогично: Следует отметить, что при нахождении , нужно проявить повышенное внимание, так как никаких чудесных равенств для их проверки не существует.
Дата добавления: 2014-11-08; Просмотров: 581; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |