Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Игры с природой




Отчет о работе

Подготовьте отчет о выполненной лабораторной работе. Он должен содержать титульный лист, формулировку задания, исходные данные, описание проблемы, которая была разрешена. Укажите случайный параметр, взятый в рассмотрение, и обоснуйте его выбор. Приведите обоснование выбора его значений. Представьте платежную матрицу и результаты ее обработки. Определите факт наличие или отсутствия седловой точки. Если она существует, то приведите результаты решения задачи. Если седловой точки нет, то приведите набор стратегий, взятых в рассмотрение, представьте формулировку и результаты решения задачи определения набора вероятностей, с которыми будут чередоваться стратегии, и поставьте каждой в соответствие решение. Сформулируйте выводы, которые можно сделать по результатам выполненной работы.

Пример содержания отчета о выполнении лабораторной работы приведен в приложении Б.

Отличительной особенностью игр с природой является то обстоятельство, что природа рассматривается как некоторая незаинтересованная инстанция, поведение которой неизвестно, но, во всяком случае, не содержит элемента враждебности и сознательного противодействия достижению наших целей. Как и в случае игр с противником, нам должна быть известна платежная матрица, соответствующая нашему выигрышу при различных своих стратегиях и состояниях (стратегиях) природы. Если в случае игры с противником предполагать определенные вероятности появления его стратегий не представлялось возможным, то в рассматриваемой ситуации нам полезно дополнительно располагать информацией о вероятностях появления возможных состояний природы, заданной, например, в виде смешанных стратегий

,

.

Задача заключается в выборе в конкретных условиях наиболее выгодной собственной стратегии, а отбрасывать «невыгодные» с точки зрения природы стратегии нельзя. Исходя из этого в теории статистических решений [3] вводится понятие риска

,

где наш риск при использовании стратегии в ответ на состояние природы , а - максимально возможный наш выигрыш при состоянии природы . Если нам известны вероятности возможных состояний природы , то было бы логичным в качестве своей стратегии принять одну из наших возможных стратегий , максимизирующую наш средний выигрыш

.

Отметим, что указанная стратегия одновременно минимизирует средний риск.

Примечание. В случае игры с природой количество наших возможных стратегий может отличаться от количества возможных стратегий природы .

При выборе оптимальной стратегии одну из существенных трудностей представляет определение конкретного набора вероятностей . Если нет никаких гипотез о вероятности появления определенного состояния природы, то используется принцип недостаточного основания Лапласа, когда вероятности назначаются равными друг другу

.

Если у нас существуют некоторые предположения о вероятностях появления определенных событий, то мы можем их расставить в порядке убывания их правдоподобности (ранжировать) и поставить им в соответствие некоторый ряд чисел, определенный, в том числе, и экспертным путем. Отметим, что в любом случае справедливо утверждение

.




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 459; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.