Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Директориальное свойство эллипса и гиперболы




Парабола

О п р е д е л е н и е. Параболой называется множество всех точек плоскости, расстояние от которых до заданной прямой, называемой директрисой, равно расстоянию до заданной точки – фокуса: .

Расстояние от фокуса до директрисы называется фокальным параметром параболы.

По аналогии с эллипсом и гиперболой выводится каноническое уравнение параболы: .

Изучение формы параболы

1. – ось симметрии параболы.

2. Точки принадлежат параболе.

3. Поиск точек пересечения произвольной прямой проходящей через начало системы координат с параболой сводится к решению к решению уравнения . Таким образом, если прямая отлична от оси (), то она пересекает параболу в двух различных точках. Ось пересекает параболу в одной точке.

 

 

О п р е д е л е н и е. Директрисой эллипса (гиперболы) называется прямая, перпендикулярная фокальной оси и отстоящая от второй оси на расстоянии .

Таким образом, для эллипса (гиперболы), заданных каноническими уравнениями , директрисы задаются уравнениями .

Имеет место следующая теорема

Т е о р е м а. Эллипс (гипербола) есть множество всех точек плоскости, отношение расстояний от которых до фокуса к расстоянию до соответствующей директрисы равно эксцентриситету.

Д о к а з а т е л ь с т в о.Фактически требуется доказать совпадение двух множеств: эллипса (гиперболы) и множества точек, обладающих указанным в теореме свойством. Таким образом, достаточно показать включение каждого из этих множеств в другое.

1. Для любой точки , принадлежащей эллипсу (гиперболе), её координаты удовлетворяют уравнению . Кроме того, для этих линий соответственно имеем соотношения: . Учитывая это, можно подсчитать . Так как , то получаем . Таким образом, имеет место включение всех точек эллипса (гиперболы) во множество точек, отношение расстояний от которых до фокуса к расстоянию до соответствующей директрисы равно эксцентриситету.

2. Пусть для точки имеет место равенство . Получаем или

.(*)

Если , то и . Уравнение (*) определяет гиперболу . То есть точка принадлежит гиперболе.

Если , то , и уравнение (*) определяет эллипс . То есть точка принадлежит эллипсу.

Таким образом, для множества точек, отношение расстояний от которых до фокуса к расстоянию до соответствующей директрисы равно эксцентриситету, показали его включение во множество точек эллипса (гиперболы).

Из пунктов 1, 2 следует справедливость утверждения теоремы.

 

Лекция 5. Классификация линий второго порядка на плоскости




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 1717; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.