Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Системы счисления. Правила перевода чисел из одной системы счисления в другую




При решении числовых задач используются технические средства, объектом преобразования которых является числа. В современных ЭВМ любая информация представляется в виде двоичных кодов, т.е. последовательности цифр 0 и 1. В связи с этим при работе с ЭВМ часто приходится использовать системы счисления, иные от привычной десятичной системы счисления.

Счислением называется порядок построения и записи знаков для изображения количественных характеристик числовой информации. Определенный способ обозначения и написания числовой информации называют системой счисления. В качестве знаков для изображения чисел в настоящее время пользуются преимущественно цифрами, Таким образом, системой счисления называется совокупность приемов записи и наименования действительных чисел посредством цифровых знаков - цифр. Системы счисления играют важную роль при конструировании вычислительной машины. Принцип работы машины зависит во многом от выбора способа изображения чисел.

Система счисления по признаку изменений значений знаков в зависимости от их положения в числе делятся на позиционные и непозиционные.

Непозиционные системы счисления - это системы, у которых количественное значение цифры зависит не от ее положения в ряду чисел, а только от ее написания. Из-за сложности и громоздкости этих систем они не применяются при обработки информации. Например, цифры римской системы счисления. Число III-3, значение каждой I одно и то же независимо от ее позиции в числе.

Позиционная система счисления называется потому, что значение каждой цифры зависит не только от ее написания, но и от места (позиции), которое занимает цифра в записанном числе, Число 929, знаки 9 имеют разное значение. Знак который находится справа характеризует девять единиц, а тот же знак слева показывает девять сотен. Позиционная система счисления строится по определенному основанию и характеризуется использованием фиксированного количества знаков, которое зависит от основания систем.

Основанием (модулем) системы называется число цифр (число единиц) одного разряда. Например, основание десятичной системы- 10, т.к. число цифр в одном разряде этой системы равно 10 (0 до 9) (количество цифр, применяемых для записи чисел в данной системе). Основание показывает во сколько раз изменяется значение цифры при ее переходе в следующий соседний разряд. Основание десятичной системы счисления показывает, что переход цифры в соседний разряд вызывает изменение ее значения в 10 раз. Числа, соответствующие полному набору знаков систем счисления, называются базой системы. Например, база в десятичной системе счисления состоит из десяти последовательных чисел от 0 до 9 (изображение арабскими цифрами).

Запись числа ведется последовательно по позициям (разрядам).

аn,..... a1, a0, a-1,..... а-n

Слева от запятой позиции нумеруется в порядке возрастания (положительные) чисел, справа от запятой в порядке возрастания (отрицательные) чисел Значение цифры в нулевой позиции равно значению числа базы; значение цифры в позиции «один» — в 10 раз больше его, а в позиции «минус один» - в 10 раз меньше. Следовательно, можно записать

an Sn+...+ a1 S1+a0S0 +a1S-1+....+anS-n

Например, 929

9·102 +2·101 +9·100=900+20+9

0,52

0,52=5·10-1 + 2·10-2

В ЭВМ наиболее пригодна система счисления, требующая фиксации только двух цифр в разряде: 0 и 1. При ее применении достигается простота конструкции и компактность арифметического устройства, а также эффективность выполнения вычислений. Двоичная система позволяет применять аппарат математической логики. К недостаткам двоичной системы счисления можно отнести; значительное увеличение, примерно в 3,3 раз, разрядности для изображения чиста, необходимость перевода для обработки чисел из десятичной в двоичную систему, а после обработки - из двоичной в десятичную. Т.к. ЭВМ обрабатывают и хранят данные только в виде набора единиц и нулей (два устойчивых состояния), то команды также представляются в машине в двоичной системе. А поскольку команд в ЭВМ насчитывается от нескольких десятков до 200 с лишним, то машина имеет дело с 6 - 8 разрядными двоичными числами для обозначения кодов операций и значительно большими — для обозначения адресов. Программисту трудно закончить команды (даже коды операции) с таким числом знаков. Поэтому используют систему счисления, которая с одной стороны относительно малозначная и с другой — кратка основанию двоичной системы (представляет степень двойки), т.е. числа легко переводятся. Это восьмеричная и шестнадцатеричная системы счисления.

Шестнадцатеричная система употребляется какпромежуточная при общении с машиной именно для записи чисел. Имеется 16 цифр:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F (A-10, B-11, C-12, D-13, E-14, F-15).

В восьмеричной системе счисления - число 8 является в виде 10

127=1·102+7·101+7·100 десятичная система счисления

127=1·82+7·81+7·80 восьмеричная система счисления.

В двоичной системе счисления основанием является число 2, которое записывается цифрами 10

1·24+1·23+0·22+0·21+1·20=25

Запись двоичной системы счисления

аn·2n+...+a1·21+a0·20+a1·2-1+...+an·2-n

Кроме того, в ЭВМ применяется двоично-десятичная система счисления. Эта система представляет собой соединение, как двоичной, так и десятичной системы счисления. Каждый разряд десятичного числа представляется в двоичной системе счисления, а запись всего числа производится в десятичной системе, т.е. в виде разрядов единиц десятков, сотен и т.д.

Например, число 769, можно представить в двоично-десятичной системе счисления следующим обрезом

769(10)=011101101001(2-10)

Правила перевода чисел из одной системы счисления в другую.

Чтобы перевести целое число из одной десятичной системы счисления в другую позиционную систему, необходимо число одной системы счисления последовательно делить на основание той системы, в которую переводится данное число. При этом деление производится до тех пор, пока частное не окажется меньше основания получаемой системы счисления. Число в новой системе счисления формируется из остатков от деления, начиная с последнего. Иначе говоря, последнее частное становится высшим разрядом числа

Чтобы перевести правильную дробь из системы счисления с большим основанием, необходимо последовательно умножать дробную часть на основание другой системы счисления. Цифры, стоящие слева от занятой, образуют переведенное число, причем запись их производится сверху вниз. В частном случае последовательное умножение прекращается, когда очередная дробь равна нулю; обычно заранее задается число разрядов после занятой в переведенном числе.

 

 

Для перевода смешанного числа из одной системы счисления в другую необходимо перевести его целую и дробные части, затем объединить полученные результаты в одно смешанное число в новой системе счисления.

18,65(10)=10010,101(2)

Спрактической точки зрения представляет интерес процедура взаимного преоб­разования двоичных, восьмеричных и шестнадцатеричных чисел. Для этого вос­пользуемся табл. 4.1 чисел от 0 до 15 (в десятичной системе счисления), представ­ленных в других системах счисления.

Таблица 4.1

Соответствие чисел в различных системах счисления

Десятичная Шестнадцатеричная Восьмеричная Двоичная
       
       
       
       
       
       
       
       
       
       
  А    
  В    
  С    
  D    
  Е    
  F    

 

Для перевода чисел из двоичной системы счисления в восьмеричную необходимо в двоичном числе направо и налево от занятой выделить триады, после чего каждая триада представляется восьмеричной цифрой

Для перевода чисел из восьмеричной системы счисления в двоичную необходимо каждую цифру восьмеричного числа представить тремя двоичными цифрами (триадами).

Восьмеричные числа         4      
Триады                

Сущность перевода из системы счисления с меньшим основанием. Чтобы перевести целое число из системы счисления с меньшим основанием, нужно представить его каксумму произведений цифр числа на основание системы в соответствующей степени и произвести вычисления по правилам системы счисления переведенного числа

376(8)=3·82+7·81+6·80=192+56+6=254(10)

11111110(2)=l·27+1·26+1·25+1·24+1·23+1·22+1·21+0·20=254(10)

1011011101(2)=1335(8)

0,24(8)=2·8-1+4·8-2=2/8+4/64+20/64=0,3125(10)

0,0101(2)=0·2-1+1·2-2+0·2-3+1·2-4=0,3125(10)

0,01101011011(2)=0,3266(8)

Для перевода чисел из десятичной системы счисления в двоично-десятичную необходимо каждую цифру десятичного числа выразить в виде соответствующей тетрады.

Десятичные-числа                    
Двоично-десятичные                    

934,5(10)=100100110100,0101(2-10)

9834(10)=1001100000110100(2-10)

0,3769(10)=0,00110111101101001(2-10)

10011101100111(2-10)=2767(10)

0,001110011000100(2-10) =0,3984(10)

Для перевода чисел из шестнадцатеричной системы счисления в двоичную следует каждую цифру шестнадцатеричного числа представить четырьмя двоичными цифрами (тетрадой).

шестнадцатеричные числа       3             А B C D Е F
Тетрады                                

 




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 2311; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.