КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Логарифмическое дифференцирование
Производная сложной функции. Производные основных элементарных функций. Основные правила дифференцирования. Обозначим f(x) = u, g(x) = v - функции, дифференцируемые в точке х.
1) (u ± v)¢ = u¢ ± v¢ 2) (u×v)¢ = u×v¢ + u¢×v 3) , если v ¹ 0
1)С¢ = 0; 9) 2)(xm)¢ = mxm-1; 10) 3) 11) 4) 12) 5) 13) 6) 14) 7) 15) 8) 16)
Теорема. Пусть y = f(x); u = g(x), причем область значений функции u входит в область определения функции f. Тогда
Рассмотрим функцию . Тогда (lnïxï)¢= , т.к. .
Учитывая полученный результат, можно записать . Отношение называется логарифмической производной функции f(x). Способ логарифмического дифференцирования состоит в том, что сначала находят логарифмическую производную функции, а затем производную самой функции по формуле Пример. Найти производную функции . Сначала преобразуем данную функцию: Пример. Найти производную функции . Пример. Найти производную функции Пример. Найти производную функции
Пример. Найти производную функции
Дата добавления: 2014-11-20; Просмотров: 445; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |