Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Реальны ли центробежные силы?




 

Мы уже знаем, что так называемые силы инерции, которые мы добавляем к реально действующим силам якобы для облегчения решения задач, на самом деле не существуют. Слово «якобы» автор употребил потому, что иногда это «облегчение» оборачивается такой ошибкой, что лучше бы и не использовать этих сил инерции вообще. Тем более сейчас, когда всю счетную работу выполняют компьютеры, а им почти все равно, облегчили мы расчеты или нет.

Так вот для вращательного движения вопрос с силами инерции обстоит гораздо запутаннее, чем для прямолинейного. И последствия ошибок могут быть хуже. Чего стоят хотя бы пресловутые центробежные силы? Почти каждый из нас, включая даже научных работников, думает, что такие силы есть и действуют они на вращающуюся точку или тело. И бывают очень обескуражены, когда узнают, что их нет и быть не может.

Приведем простейший, но тем не менее убийственный для этих сил пример. Известно, что Луна вращается вокруг Земли. Спрашивается, действуют ли на нее центробежные силы? Спросите, пожалуйста, об этом своих товарищей, родителей, знакомых. Большинство ответит: «Действуют!» Тогда вы поспорьте с ними на что хотите и начинайте доказывать, что этого не может быть.

Основных довода – два. Первый: если бы на Луну действовала центробежная сила (то есть сила, направленная от центра вращения наружу), то она могла бы действовать только со стороны Земли, так как других тел поблизости нет. Думаю, что напоминать о том, что силы действуют на тела только со стороны других тел, а не «просто так», уже не надо. А если все так, то, значит, Земля не притягивает, а отталкивает Луну – от себя наружу. Между тем, как мы знаем, существует закон всемирного тяготения, а не отталкивания. Поэтому на Луну может действовать со стороны Земли только одна‑единствен‑ная сила – притяжения P, направленная точно наоборот – от Луны к Земле. Такая сила называется центростремительной, и она реально есть, она‑то и сворачивает Луну с прямолинейного инерционного пути и заставляет вращаться вокруг Земли. А центробежной силы, извините, нет (рис. 54).

 

 

Второй довод. Он для тех, кто не знает о существовании закона всемирного тяготения или забыл его. Тогда если бы на Луну действовала центробежная сила (естественно, со стороны Земли, так как других тел, как мы уже знаем, поблизости нет), то Луна не стала бы вращаться вокруг Земли, а улетела бы прочь. Если на Луну не действовало бы вообще никаких сил, то она спокойно пролетела бы мимо Земли по инерции, то есть по прямой (мы же забыли о всемирном тяготении!). А если бы со стороны Земли на Луну действовала центробежная сила, то Луна, подлетая к Земле, свернула бы в сторону и под действием этой силы улетела бы навсегда в космическое пространство. Только бы мы ее и видели! Но раз этого не происходит, стало быть, центробежной силы нет. Вы выиграли спор, причем в любом случае. А появилась эта центробежная сила оттуда же, откуда и силы инерции в прямолинейном движении – из принципа Даламбера. Здесь, во вращательном движении, этот принцип еще более облегчает решение задач, чем в прямолинейном. Еще бы, прикладываем к существующей центростремительной силе несуществующую центробежную – и Луна как бы зависает на месте! Делайте с ней, что хотите, определяйте ускорения, скорости, радиусы орбиты, периоды обращения и все остальное. Хотя все это можно определить и без использования принципа Даламбера.

 

 

Рис. 55. Занос автомобиля на повороте (схема ГАИ)

 

Но Луна Луной, это все пустяки по сравнению с получением водительских прав в ГАИ. Автор преподает на автомобильном факультете, где все его студенты обязаны получать права и все стонут от ГАИвской физики. Жалуются, что в ГАИ им объясняют движение автомобиля на повороте так: «Поскольку при повороте на автомобиль действует сила тяги, направленная вперед по касательной, и центробежная сила, действующая наружу, то занести машину может только наружу от касательной» (см. схему на рис. 55). Но так как вместо центробежной на автомобиль действует центростремительная сила, направленная точно наоборот, то занесет машину внутрь от касательной! Если, конечно, не учитывать других причин – увода колес, переворачивания, бокового ветра, удара сбоку и т. д. Таким образом, центробежная сила, вернее, учет ее вместо центростремительной, может привести к аварии, или ДТП, так как автомобиль поедет совсем не туда, куда рассчитывали.

И вот студенты попросили автора научить их, как убедить инспектора ГАИ в отсутствии центробежной силы. Запоминайте, и вам может пригодиться!

Если на автомобиль и действует какая‑нибудь сила P, то только со стороны дороги на колеса (воздух здесь ни при чем, его не учитываем). Если эта сила центробежная, то она будет прогибать шины от центра наружу, а если центростремительная – то, наоборот, к центру. А любой инспектор ГАИ отлично знает, что на повороте шины автомобилей прогибаются по направлению к центру (рис. 56). Значит, и сила P действует туда же, и она центростремительная. Скольких аварий удалось бы избежать, если бы в ГАИ «не злоупотребляли» принципом Даламбера!

 

 

Рис. 56. Шины при повороте прогибаются к центру поворота

 

Но ради справедливости заметим все‑таки, что центробежные или просто направленные от центра силы все‑таки бывают, но действуют они вовсе не на то тело, которое вращается, а на связь, удерживающую это тело (рис. 57). То есть не на автомобиль, а на дорогу, не на Луну, а на Землю, не на камень в праще, а на веревку и руку человека и т. д.

 

 

Рис. 57. Действие центробежных сил

 

Может возникнуть вопрос, а почему же все‑таки падает велосипед наружу при крутом повороте, если не успел наклониться внутрь, почему опрокидываются наружу при поворотах на большой скорости трамваи, поезда и автомобили? Ведь центробежной силы нет, что же толкает эти машины наружу при повороте?

Поясним это на примере велосипеда, а заодно станет ясно, почему он так устойчив. Представьте себе едущий велосипед, который начинает поворачивать (рис. 58). Взглянем на него сверху. Колеса начинают «уходить» к центру поворота, влекомые силой трения с дорогой, а весь верх, включая седока, или байкера по‑современному, стремится продолжать свой путь прямолинейно – по закону инерции. Что же получается? Колеса «выезжают» из‑под седока вбок, и он падает набок – наружу от поворота. Но ни в коем случае не так, как объясняют это в ГАИ, – не наружу от касательной к повороту, от своего предыдущего прямолинейного пути. А точнее – где‑то между окружностью поворота и этой касательной. Этим же действием инерции объясняется устойчивость движения велосипеда. Стоит начать ему падать набок, как сознательно или автоматически велосипедист поворачивает руль в сторону падения и как бы «подводит» колеса под положение наклон себя.

 

 

Рис. 58. Едущий велосипед на повороте: а – вид сверху; б – вид спереди

 

Таким же образом, а именно проявлением инерции, объясняется отбрасывание людей наружу на так называемом «колесе смеха», или «чертовом колесе». Можно говорить о центробежном эффекте или центробежном стремлении, благодаря которому люди, автомобили, велосипеды и т. д., движущиеся по кругу, стремятся оказаться на самом большом его радиусе, или, как это нам кажется, отбрасываются наружу (рис. 59). Естественно – они стремятся двигаться по прямой (по закону инерции), а прямая – это та же окружность, но с бесконечно большим радиусом, заведомо превышающим радиус любой окружности.

 

 

Рис. 59. Люди на вращающемся колесе отбрасываются на его края

 

На этом же свойстве основаны многочисленные другие аттракционы – «чертовы», или «мертвые», петли (изобретенные в 1902 г. одновременно двумя цирковыми актерами – Джонсоном и Нуазеттом) (рис. 60), наклонные карусели, которые широко используются и сегодня в парках развлечений, и т. д.

 

 

Рис. 60. «Чертова петля» и велосипед на ней

 

Этот же центробежный эффект используется для создания так называемой «искусственной гравитации», причем современный взгляд на природу тяготения, как это ни удивительно, не усматривает здесь особой разницы. (Кого заинтересует этот достаточно сложный вопрос, автор отсылает к своей книге [11]). Космические станции предполагается вращать вокруг оси так, чтобы космонавты чувствовали себя комфортно, ощущая тяжесть почти как на Земле. Нечто аналогичное происходит и с растениями, которые высаживают на внутренней части вращающегося колеса (рис. 61). Проросшие семена бобов дают ростки, устремляющиеся не вверх, как обычно, а к центру колеса, т. е. в направлении искусственной Так было показано, что и для живых организмов гравитация естественная или искусственная – все равно.

 

 

Рис. 61. Стебли проросших растений гравитации. направлены к оси, корешки – наружу

 

Если быть точнее, то конечно, разница есть. При естественной гравитации тела притягиваются к некой точке, а при искусственной как бы «отталкиваются» от нее, что и видно из рис. 61. Но принципиального отличия в биологическом отношении здесь нет.

 




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 799; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.