Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пружина, резина или газ?




 

Позвольте, маховики, супермаховики… а что, в пружинах, как это делается, например, в механических часах или игрушках, разве не запасают механическую энергию? Ведь существуют же «упругие» накопители, или аккумуляторы энергии.

Аккумуляторы с использованием упругости или потенциальной энергии применялись человеком еще в глубокой древности: вспомним хотя бы о луках, самострелах и катапультах. В эпоху Возрождения пружинные двигатели можно было встретить в заводных игрушках, часах и даже в «самобеглых» каретах (рис. 70), предназначенных исключительно для торжественного выезда королей. Пружины тогда ковали кузнецы, и стоили они весьма дорого.

 

 

Рис. 70. Механическая карета XVI в. с пружинным двигателем, заводимым ступальным колесом (с рисунка Альбрехта Дюрера)

 

Сейчас же пружинные двигатели для самых различных механизмов выпускаются многомиллионными сериями. Наиболее распространенные из них – двигатели со спиральной пружиной. Закаленная пружинная лента закладывается в обойму (барабан), крепится одним концом к ней, другим – к валу и заворачивается вокруг него (рис. 71). В таком «взведенном» состоянии пружина «заневоливается», т. е. оставляется на несколько часов или дней для стабилизации упругих свойств. КПД этих двигателей выше 0,9. Пружинная лента работает на изгиб. Причем та ее часть, что напряжена сильнее (навернута на меньший диаметр), аккумулирует больше энергии; периферийные же части напряжены слабее – стало быть, и аккумулируют меньше энергии. Если же пружину предварительно изогнуть S‑образно, тогда все ее участки будут напряжены равномерно, и она накопит гораздо больше потенциальной энергии.

 

 

Рис. 71. Пружинный аккумулятор со спиральной пружиной (а) и S‑образная спиральная пружина (б): 1 – обойма; 2 – пружина; 3 – вал

 

Поднять энергоемкость спиральных пружин можно еще, придав им желобчатый профиль. Наворачиваясь на вал, такая пружина претерпевает деформацию изгиба как в продольном, так и поперечном направлениях и накапливает максимальную энергию. S‑образные пружины с желобчатым профилем обладают и другими достоинствами, например почти постоянным крутящим моментом.

 

 

Рис. 72. Гидроаккумулятор с пружинным двигателем: 1 – пружина; 2 – поршень; 3 – гидромотор

 

Для машин с гидравлической системой лучше всего подойдет гидроаккумулятор с пружинным двигателем (рис. 72). В нем накопление и выделение энергии производятся при закачке или выпуске масла. Здесь пружина уже не ленточная, а проволочная. Эффективность проволоки можно значительно повысить, удалив осевые участки, которые при ее кручении не участвуют в процессе накопления энергии. Конечно, изготовление вместо пружинной проволоки трубки с высокими прочностными свойствами куда сложнее и труднее, но при необходимости приходится идти и на это. Однако, несмотря на все меры по увеличению энергоемкости пружинных двигателей, они по этому показателю сильно отстают от аккумуляторов других видов. Например, энергоемкость маховиков превышает энергоемкость любых пружин при той же прочности материала в десятки тысяч раз! Каковы же пути повышения энергоемкости «упругих» аккумуляторов? Накопленная в аккумуляторе механическая энергия тем выше, чем значительнее сила и перемещение под действием этой силы. Следовательно, в качестве аккумулирующего элемента целесообразно использовать материалы, допускающие большие деформации под действием больших сил. И здесь, пожалуй, не найдешь ничего лучшего, чем газ. При его сжатии запасается огромная энергия, соизмеримая с энергией перспективных электроаккумуляторов и маховиков. К сожалению, и недостатки «газовых» аккумуляторов (рис. 73) весьма существенны.

 

 

Рис. 73. Газовый аккумулятор (пневмоаккумулятор): 1 – баллон; 2 – пневмодвигатель; 3 – клапан

 

Прежде всего, закачивать газ в баллон надо компрессором, а отбирать энергию – пневмодвигателем. А КПД этих агрегатов довольно невысок: хорошо, если удастся использовать хоть четверть затраченной энергии. И еще: газ при сжатии нагревается, а при расширении охлаждается. Поэтому только что закачанный газ в баллоне очень горяч, но со временем он охлаждается, принимает температуру окружающей среды, и это выделяющееся тепло уносит с собой до 40 % накопленной энергии – от запасов газового аккумулятора остаются лишь жалкие крохи.

Однако есть способ повышения КПД газовых аккумуляторов – это их симбиоз с гидроприводом (рис. 74). Выше был упомянут пружинно‑гидравлический аккумулятор, где энергию аккумулирует пружина, а гидросистема выполняет лишь роль трансмиссии. При этом КПД аккумулятора (называемого гидрогазовым) сильно возрастает. Во‑первых, газ расширяется в гораздо меньшей степени, чем в чисто газовых аккумуляторах, и при этом происходит гораздо меньшее тепловыделение. Во‑вторых, гидросистема, которая в данном случае является гидрообьемной, или статической, обладает весьма высоким КПД. Поэтому гидрогазовые аккумуляторы находят широкое применение для аккумулирования значительных количеств энергии в самых различных машинах: прессах, стартерных устройствах, самолетах.

 

 

Рис. 74. Гидрогазовый (гидропневматический) аккумулятор: 1 – газовая полость; 2 – жидкость; 3 – эластичная перегородка; 4 – обратимая гидромашина; 5 – бак

 

Для повышения удельной энергии гидрогазовых аккумуляторов баллон, в который закачан газ, выполняется из возможно более прочных материалов, имеющих к тому же низкую плотность. Такими материалами могут быть стеклянное или графитовое волокно на эпоксидной связке, а также целый ряд недавно разработанных сверхпрочных материалов. Баллон лучше всего изготовить в виде сферы (она имеет наименьшую площадь при наибольшем объеме), внутренняя поверхность которой соответствующим образом герметизирована. Для закачки в баллон используются газы, технически инертные, – обычно азот, реже гелий. Газовая и жидкостная среды в таком аккумуляторе чаще всего разделяются. В старых конструкциях цилиндрических баллонов это делалось с помощью свободного поршня, а в более прогрессивных, в том числе и сферических, – с помощью эластичной перегородки. Давление газа в таких аккумуляторах обычно бывает 15–40 МПа.

Гигантские газовые аккумуляторы могут применяться в качестве аккумулирующих устройств для электростанций. Энергия будет запасаться в аккумуляторе путем сжимания газа (разумнее всего – воздуха) в ночное время, когда расход электроэнергии мал. В часы пик при потребности в максимальной мощности электростанции газ будет подаваться на мощные турбины или другие пневмодвигатели, добавляя накопленную энергию к энергии электростанции. Согласно существующим проектам газ предполагается закачивать в огромные полости под землей (например, выработанные шахты).

Но вернемся к твердым веществам. Неужели нет таких веществ, которые, имея достаточную прочность (например, как у металлов), имеют при этом высокую упругую деформацию? Тогда пружина из таких материалов накопила бы побольше энергии.

Оказывается, есть такие материалы и называются они псевдоупругими. Псевдоупругость – это способность материала (металла) растягиваться до разрыва не на 1 – 2 %, как стальная проволока, например, а на 15–20 %. Причем если обычная сталь при деформациях «устает» и выдерживает не так уж много циклов (вспомним, как часто ломаются пружины!), то псевдоупругий материал, у которого принцип деформации иной, выдерживает циклы нагружения практически без «усталости».

Псевдоупругие материалы – почти те же, которые обладают эффектом памяти формы, о них много писалось и пишется. В основном это сплавы титана и никеля; если им задать некую форму в нагретом состоянии, а потом, охладив, изменить эту форму (например, согнуть проволоку как угодно), то при нагревании сплав снова примет прежнюю форму, как бы «вспоминая» ее. Такие сплавы применяют сейчас во множестве случаев, начиная с тепловых машин, которые работают без пара и бензина при минимальной разности температур, и кончая зондами, которые вводятся в артерии и даже сердце человека. Нагреваясь в его теле, сплав «вспоминает» свою прежнюю форму и, к примеру, расширяет артерию.

Но речь идет о свойстве псевдоупругости у таких материалов. Проволоку из такого сплава можно деформировать – изгибать, растягивать в 10 раз больше, чем самую прочную и упругую сталь. Стало быть, и энергии пружина из такого материала накопит в 10 раз больше. Вот какой скачок в накоплении энергии! Часы с такой пружиной, например, будут идти в 10 раз дольше, чем обычные заводные, но использовать такие часы можно будет пока разве только в сауне. Потому что «упругую» силу такой материал приобретает при 150–200 °С. Автор не сомневается, что скоро будут созданы материалы, которые будут «сильны» и при комнатной температуре. Пока же они ведут себя при таких температурах вяло, удлиняясь и укорачиваясь медленно, как будто сделаны они из смолы, только очень прочной.

Но автор придумал применение таким материалам и сегодня, причем применение очень эффектное – для спорта. Если сделать тросик для метания молота не из стали, а из такого материала, по прочности близкого к ней, то при вращении молота псевдоупругий тросик будет растягиваться в 20 раз сильнее, чем стальной. А это, как хорошо понимают спортсмены – метатели молота, обеспечит значительное, почти на 20 %, повышение дальности полета снаряда. Материал тросика в правилах не регламентирован, так что и нарушений не будет!

Помог же шест из стеклопластика вместо бамбукового поднять рекорды прыжков, вот и тросик из псевдоупругого материала поднимет рекорды метателей. Спортсмены, не медлите, рекорды ждут вас!

Остается еще один материал, который имеет огромную упругую деформацию, правда не такой уж прочный. Это знакомая всем нам резина. Лучше всего она работает на растяжение, накапливая при этом удельной энергии в десятки раз больше, чем стальные пружины. Однако для машин необходимо, чтобы, как и в заводных пружинах, вал накопителя закручивался бы.

С учетом этого автором сконструирована упругая муфта‑аккумулятор (рис. 75). Резиновые жгуты, закрепленные концами на ведущей и ведомой полумуфтах, опираются на легкие, свободно сидящие на оси промежуточные поддерживающие диски (изготовленные, например, из пластмассы) и при относительном повороте полумуфт принимают положение винтовой линии. Поскольку крепление жгутов к полумуфтам шарнирное, резина практически подвергается только растяжению. По энергоемкости эта муфта соизмерима даже с маховиками.

Но почему же резиновые элементы, обладая столь ценными качествами, используются как накопители энергии не так уж широко?

 

 

Рис. 75. Резиновая муфта – аккумулятор энергии: 1 – ведущий вал; 2 – ведомая полумуфта; 3 – резиновые жгуты; 4 – поддерживающие промежуточные диски

 

Если деформировать, например, растягивать, резиновый упругий элемент и записывать зависимость силы от перемещения его конца, то кривая растяжения резины при накоплении в ней энергии будет отличаться от кривой ее сокращения при выделении энергии. Эти две кривые образуют так называемую гистерезисную петлю, характеризующую потери энергии на упругий гистерезис (рис. 76). И чем больше растягивать резину, т. е. накапливать в ней энергию, тем выше потери на упругий гистерезис. Кроме того, чем дольше сохраняется энергия в растянутой резине, тем больше петля гистерезиса и тем меньше энергии будет возвращено обратно; гистерезисные потери постепенно разрушают резину, и свойства ее меняются. Все это (мы уже не говорим о других недостатках) ограничивает применение резиновых упругих элементов для аккумулирования энергии в точных, долговечных и надежных приборах и машинах. Широко применяются резиновые аккумуляторы энергии в моделях в качестве резиномоторов.

 

 

Рис. 76. График растяжения резинового жгута

 

И о том, что резина значительно пригоднее для накопления энергии, чем пружина, говорит тот факт, что с резиномоторами летает множество моделей самолетов и вертолетов, а с пружиной еще ни одна модель не поднялась в воздух!

 

Как помочь «Формуле‑1»?

 

И, собственно, не только «Формуле‑1», а любому автомобилю – стать более динамичным. Просто на «Формуле‑1» это выглядело бы поэффектнеее.

Если маховик – такой емкий накопитель энергии, то почему бы от него не приводить транспортные средства, как от двигателя? Раскрутить маховик электромотором – и поехали!

Да, есть такие транспортные машины, например тележки для внутризаводских перевозок (рис. 77). Ходят они вперед и назад, могут и остановиться. Только не могут самостоятельно изменять скорость, она сама меняется – все убывает по мере снижения запаса энергии в маховике.

 

 

Рис. 77. Маховичная грузовая тележка:

 

1 – редуктор; 2 – рукоять хода и реверса; 3 – рукоять сцепления; 4 – маховик; 5 – электродвигатель; 6 – платформа; 7 – шасси

 

 

Рис. 78. Швейцарский маховичный автобус – гиробус (а) и его маховик (б)

 

Для автомобиля такое поведение неприемлемо. Он должен изменять свою скорость, как того захочет водитель. Для этого между маховиком и колесами машины должна быть бесступенчатая трансмиссия. Ступенчатая коробка передач тут не подходит, каждое переключение передачи тут будет сопровождаться ударом и продолжительным буксованием сцепления – никакой энергии маховика не хватит. Поэтому в первом же маховичном автобусе – гиробусе, построенном еще в 1950‑х гг. в Швейцарии (рис. 78, а), была применена бесступенчатая электрическая трансмиссия. Ходил гиробус в Швейцарии, Бельгии, даже в Африке, проходил между подзарядками маховика (рис. 78, б) 1,5 км на трассах протяженностью до 10 км. Но несмотря на появление подобных гиробусов вплоть до настоящих времен то в Европе, то в Америке, трудно назвать их перспективными. Как, впрочем, и любой автомобиль, работающий на накопленной энергии, включая всеми хваленные электромобили. Автор берется доказать это в двух словах.

Первое – если все автомобили переделать на электромобили, или махомобили, как гиробус, то для подзарядки их накопителей не хватит энергии электростанций всего мира. При этом ее уже не везде хватает и так, а тут подключатся автомобили, суммарная мощность которых во много раз больше мощности всех электростанций мира. Второе – если подсчитать КПД обычной электростанции с преобразованиями тока и переброской его на нужное расстояние и учетом потерь в зарядном устройстве и аккумуляторе, можно прослезиться. Этот КПД будет значительно меньше тех 40 %, которые может обеспечить дизель в лучшем случае. А тем более тех 60–70 %, которые обеспечивают так называемые топливные элементы или электрохимические генераторы, непосредственно, бесшумно и экологично переводящие энергию топлива в электроэнергию.

Так что же, вообще никакой накопитель на автомобиле не нужен? Да нет, нужен, только для несколько иной цели. Дело в том, что двигатель почти никогда не работает на автомобиле с максимальным КПД. Для этого он должен работать почти на максимальной мощности, т. е., чтобы было понятнее для водителей, педаль акселератора должна быть уперта в пол (рис. 79). Такое бывает либо на предельной скорости (обычно не менее 150–160 км/ч для современных машин) либо при маневрах – обгонах. В городе, например, средняя мощность двигателя менее одной десятой от установочной. КПД при этом – 5 – 7%, что видно по расходу топлива. А ехать, например, со скоростью 160 км/ч и неэкономично – все топливо уходит на взбалтывание воздуха, и опасно – на большинстве трасс такого не допустит ГАИ.

 

Рис. 79. Зависимость КПД двигателя от загрузки его по мощности

 

Что же делать, чтобы заставить двигатель всегда работать на оптимальном, самом экономичном режиме? С маховиком это очень даже просто. Двигатель малой мощности постоянно работает на своем оптимальном режиме, отдавая всю энергию, выработанную с максимальным КПД, маховику. Маховик в этом случае выступает как «банк» для энергии (рис. 80). Если этот «банк» переполнился, двигатель автоматически отключается. Движение же автомобиль получает именно от маховика через бесступенчатую коробку передач. Кроме того, что автомобиль использует для движения самую «экономичную» энергию, на спусках и при торможениях избыточная энергия не теряется в тормозах, а переходит обратно в маховик. Этот процесс называется рекуперацией, и он позволяет дополнительно повысить экономичность автомобиля, в результате чего КПД двигателя может оказаться даже выше своего максимума.

 

 




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 2124; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.