КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Операторы. Имена констант и переменных образованы цепочками литер
Литеры Имена констант и переменных образованы цепочками литер. Хотя для каждого вида имени (атом, целое число, переменная) имеются специальные правила, указывающие, из каких литер оно может составляться, полезно знать, что представляет собой весь набор литер, распознаваемых Прологом. Это связано с тем, что литера сама может рассматриваться как самостоятельный элемент данных. Поскольку мы уже знакомы с целыми числами, можно теперь описать, как литеры представляются небольшими целыми числами. Над литерами чаще всего выполняются операции «ввод» и «вывод». Эти операции будут обсуждаться в гл. 5. В Прологе имеются два типа литер: печатаемые литеры и непечатаемые литеры. Печатаемые литеры обладают визуальным образом, появляющимся на терминале при выводе. Непечатаемые литеры такого образа не имеют, но при выводе они вызывают выполнение некоторых действий. Этими действиями могут быть пропуск пустого места («печать» пробела), переход на новую строку, подача звукового сигнала. Ниже приведены все печатаемые литеры, которые можно использовать в Пролог-программах. ABCDEFGHIJKLMNOPQRSTUVWXYZ abedefghijklmnopqrstuvwxyz !"#$%&'()=–~^|\{}[] _`@ +;*:‹›,.?/ Читатель должен заметить, что данный набор более полон, чем приводившийся в начале главы. Некоторые из этих литер имеют специальное значение. Например, круглые скобки используются для выделения компонент структур. Однако, как мы увидим в последующих главах, любая литера может рассматриваться в Пролог-программе как и информационный элемент данных. Литеры могут печататься, вводиться с клавиатуры, сравниваться и принимать участие в арифметических операциях. Литеры на самом деле интерпретируются как небольшие целые числа – из диапазона от 0 до 127. Каждой литере поставлено в соответствие некоторое целое число, называемое ее ASCII-кодом. Аббревиатура ASCII расшифровывается следующим образом: American Standard Code for Information Interchange (Американский стандартный код для обмена информацией)[6]. Этот код широко используется на вычислительных машинах и в языках программирования во всем мире. Таблицу кодов ASCII можно найти почти в любом руководстве по работе на ЭВМ. Коды букв упорядочены в алфавитном порядке, так что выяснение порядка следования литер в алфавите сводится к сравнению их кодов с помощью операторов отношений, описываемых ниже в данной главе. Коды всех печатаемых литер больше 32. Хотя польза кода ASCII в данный момент может быть для читателя и не очевидной, мы вновь вернемся к этому вопросу в разд. 3.2. и 3.5. Иногда удобно записывать некоторые функторы как операторы. Это особая форма синтаксиса, облегчающая чтение соответствующих структур. Например, арифметические операции обычно записываются как операторы. В арифметическом выражении x+y*z знаки сложения и умножения являются операторами. Если же данное арифметическое выражение записать в обычном для структур виде, то оно будет выглядеть следующим образом: +(x,*(y,z)). Однако в некоторых случаях операторная форма записи удобнее потому, что мы со школьных лет привыкли использовать ее в арифметических выражениях. Кроме того, структурная форма требует заключения аргументов функтора в круглые скобки, что иногда обременительно. Важно отметить, что операторы не вызывают выполнения каких-либо арифметических операций. Так, в Прологе 3+4 и 7 означают разные объекты. Терм 3+4 - другой способ записи терма +(3,4), который является структурой. Позже будет описан способ интерпретации структур как арифметических выражений и вычисления их в соответствии с правилами арифметики. Для начала необходимо знать, как читать арифметические выражения, содержащие операторы. Это требует знания трех свойств каждого оператора: его позиции, его приоритета и его ассоциативности. В данном разделе будут описаны правила использования операторов Пролога с учетом этих свойств, но пока без излишних подробностей. В Пролог-программе можно определить много различных видов операторов, но мы будем иметь дело только с хорошо знакомыми атомами +, -, * и /. Синтаксис терма, содержащего операторы, частично зависит от их позиций. Операторы, подобные знакам сложения (+), вычитания (-), умножения (*) и деления (/), записываются между своими аргументами и называются поэтому инфиксными операторами. Можно также помещать операторы перед их аргументами. Так, в выражении - х+у минус перед х обозначает арифметическую операцию изменения знака. Операторы, записываемые перед своими аргументами, называются префиксными операторами. Наконец, некоторые операторы могут помещаться после своего аргумента. Например, оператор вычисления факториала, употребляемый математиками, помещается после числа, для которого необходимо вычислить факториал. В математических обозначениях факториал х записывается как x! t где восклицательный знак обозначает операцию вычисления факториала. Операторы, записанные после своих аргументов, называются постфиксными операторами. Таким образом, позиция оператора указывает его место по отношению к своим аргументам. Все операторы, рассматриваемые в следующем разделе, являются инфиксными. Теперь рассмотрим приоритет операторов. Когда нам необходимо проинтерпретировать терм х+y*z как арифметическое выражение, мы знаем, что для того, чтобы получить правильное значение, нужно сначала перемножить у и z, а затем прибавить х. Этими знаниями мы обязаны школе, где нас научили, что умножения и деления выполняются до сложений и вычитаний; исключениями являются случаи, когда порядок операций задается скобками. С другой стороны, структурная форма +(x,*(y,z)) явно показывает порядок выполнения операций, поскольку структура с функтором * является аргументом структуры с функтором +. Для того чтобы ЭВМ правильно произвела соответствующие вычисления, необходимо сначала выполнить умножение – тогда в структуре с + будут известны значения аргументов. Таким образом, для использования операторов необходимы правила, указывающие порядок выполнения операций. Именно этой цели служит приоритет. Приоритет оператора определяет, какая операция выполняется первой. В Прологе каждый оператор связан со своим классом приоритета. Класс приоритета представляет собой целое число, величина которого зависит от конкретной версии Пролога. Однако в любой версии оператор с большим приоритетом имеет класс приоритета, более близкий к 1. Если классы приоритетов принимают значения из диапазона от 1 до 255, то оператор с первым классом приоритета выполняется первым, до выполнения операторов, принадлежащих (например) к классу 129. В Прологе операторы умножения и деления принадлежат к более высокому классу приоритетов, чем сложение и вычитание, поэтому терм а-b/с эквивалентен терму -(a,/(b,c)). Точное соответствие между операторами и классами приоритетов в данный момент не существенно, однако желательно запомнить относительный порядок выполнения операций. Наконец, рассмотрим свойство ассоциативности операторов. Необходимость знания этого свойства становится очевидной, когда нам требуется определить порядок выполнения операторов с одинаковым приоритетом. Например, какому выражению эквивалентно выражение «8/2/2» – «(8/2)/2» или «8/(2/2)»? В первом случае при интерпретации выражения было бы получено значение 2, во втором 8. Для того чтобы иметь возможность разделить эти два случая, необходимо знать, является ли данный оператор левоассоциативным или правоассоциативным. Левоассоциативный оператор должен иметь слева операции одинакового или низшего приоритета, а справа – операции низшего приоритета. Например, все арифметические операции (сложить, вычесть, умножить и поделить) являются левоассоциативными. Это означает, что выражения, подобные «8/4/4», интерпретируются как «(8/4)/4», а выражение «5+8/2/2» эквивалентно «5+((8/2)/2)». На практике в выражениях, понимание которых затрудняется правилами приоритета и ассоциативности, люди стремятся использовать круглые скобки. В нашей книге этот прием тоже будет использоваться, однако для полного понимания операторов надо знать синтаксические правила. Напомним, что структура, образованная арифметическими операторами, подобна любой другой структуре. На самом деле никакие арифметические действия не выполняются до тех пор, пока не встретится предикат 'is' (есть), описанный в разд. 2.5.
Дата добавления: 2014-12-08; Просмотров: 432; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |