КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сглаживание временных рядов с помощью скользящей средней
Распространенным приемом при выявлении тенденции развития является сглаживание временного ряда. Суть различных приемов сглаживания сводится к замене фактических уровней временного ряда расчетными, обладающими меньшей колеблемостью. Это способствует более четкому проявлению тенденции развития. Иногда сглаживание применяют как предварительный этап перед использованием других методов выделения тенденции. Скользящие средние позволяют сгладить как случайные, так и периодические колебания, выявить имеющуюся тенденцию в развитии процесса, и поэтому, являются важным инструментом при фильтрации компонент временного ряда. Алгоритм сглаживания по простой скользящей средней может быть представлен в виде следующей последовательности шагов: 1. Определяют длину интервала сглаживания g, включающего в себя g последовательных уровней ряда (g<n). При этом надо иметь в виду, что чем шире интервал сглаживания, тем в большей степени взаимопогашаются колебания, и тенденция развития носит более плавный, сглаженный характер. Чем выше колеблемость, тем шире должен быть интервал сглаживания. 2. Разбивают весь период наблюдений на участки, при этом интервал сглаживания как бы скользит по ряду с шагом, равным 1. 3. Рассчитывают арифметические средние из уровней ряда, образующих каждый участок. 4. Заменяют фактические значения ряда, стоящие в центре каждого участка, на соответствующие средние значения. При этом удобно брать длину интервала сглаживания g в виде нечетного числа: g=2p+1, т.к. в этом случае полученные значения скользящей средней приходятся на средний член интервала. Наблюдения, которые берутся для расчета среднего значения, называются активным участком сглаживания. При нечетном значении g все уровни активного участка могут быть представлены в виде: yt-p, yt-p+1,..., yt-1, yt, yt+1,…, yt+p-1, уt+p, а скользящая средняя определена по формуле: , (5.13) где уi - фактическое значение i -го уровня; - значение скользящей средней в момент t; 2р+1 - длина интервала сглаживания. Процедура сглаживания приводит к полному устранению периодических колебаний во временном ряду, если длина интервала сглаживания берется равной или кратной циклу, периоду колебаний. Для устранения сезонных колебаний желательно было бы использовать четырех- и двенадцатичленную скользящие средние, но при этом не будет выполняться условие нечетности длины интервала сглаживания. Поэтому при четном числе уровней принято первое и последнее наблюдение на активном участке необходимо брать с половинными весами: . (5.14) При использовании скользящей средней с длиной активного участка g=2p+1 - первые и последние р уровней ряда сгладить нельзя, их значения теряются. Очевидно, что потеря значений последних точек является существенным недостатком, т.к. для исследователя последние «свежие» данные обладают наибольшей информационной ценностью. Рассмотрим один из приемов, позволяющих восстановить потерянные значения временного ряда. Для этого необходимо: 1) Вычислить средний прирост на последнем активном участке: yt-p, yt-p+1,..., yt-1, yt, yt+1,…, yt+p-1, уt+p где: g - длина активного участка; уt+p - значение последнего уровня на активном участке; уt-p - значение первого уровня на активном участке; — средний абсолютный прирост. 2) Получить р сглаженных значений в конце временного ряда путем последовательного прибавления среднего абсолютного прироста к последнему сглаженному значению. Аналогичную процедуру можно реализовать для оценивания первых уровней временного ряда. Метод простой скользящей средней применим, если графическое изображение динамического ряда напоминает прямую. Когда тренд выравниваемого ряда имеет изгибы, и для исследователя желательно сохранить мелкие волны, применение простой скользящей средней нецелесообразно. Если для процесса характерно нелинейное развитие, то простая скользящая средняя может привести к существенным искажениям. В этих случаях более надежным является использование взвешенной скользящей средней. При сглаживании по взвешенной скользящей средней на каждом участке выравнивание осуществляется по полиномам невысоких порядков. Чаще всего используются полиномы 2-го и 3-его порядка. Так как при простой скользящей средней выравнивание на каждом активном участке производится по прямой (полиному первого порядка), то метод простой скользящей средней может рассматриваться как частный случай метода взвешенной скользящей средней. Простая скользящая средняя учитывает все уровни ряда, входящие в активный участок сглаживания, с равными весами, а взвешенная средняя приписывает каждому уровню вес, зависящий от удаления данного уровня до уровня, стоящего в середине активного участка. Выравнивание с помощью взвешенной скользящей средней осуществляется следующим образом. Для каждого активного участка подбирается полином вида: , параметры которого оцениваются по методу наименьших квадратов. При этом начало отсчета переносится в середину активного участка. Например, для длины интервала сглаживания g=5, индексы уровней активного участка будут следующими i: -2, -1, 0, 1, 2. Тогда сглаженным значением для уровня, стоящего в середине активного участка, будет значение параметра ао подобранного полинома. Нет необходимости каждый раз заново вычислять весовые коэффициенты при уровнях ряда, входящих в активный участок сглаживания, т.к. они будут одинаковыми для каждого активного участка. Причем при сглаживании по полиному k -ой нечетной степени весовые коэффициенты будут такими же, как при сглаживании по полиному (k-1) степени. В таблице 5.3 представлены весовые коэффициенты при сглаживании по полиному 2-го или 3-го порядка (в зависимости от длины интервала сглаживания). Так как веса симметричны относительно центрального уровня, то в таблице использована символическая запись: приведены веса для половины уровней активного участка; выделен вес, относящийся к уровню, стоящему в центре участка сглаживания. Для оставшихся уровней веса не приводятся, т. к. они могут быть симметрично отражены. Например, проиллюстрируем использование таблицы для сглаживания по параболе 2-го порядка по 5-членной взвешенной скользящей средней. Тогда центральное значение на каждом активном участке yt-2, yt-1, yt, yt+1, yt+2, будет оцениваться по формуле: . (5.15) Отметим важные свойства приведенных весов: 1. Они симметричны относительно центрального уровня. 2. Сумма весов с учетом общего множителя, вынесенного за скобки, равна единице. 3. Наличие как положительных, так и отрицательных весов, позволяет сглаженной кривой сохранять различные изгибы кривой тренда. Существуют приемы, позволяющие с помощью дополнительных вычислений получить сглаженные значения для р начальных и конечных уровней ряда при длине интервала сглаживания g=2p+l. Таблица 5.3 Весовые коэффициенты при сглаживании по полиномам второго и третьего порядка
Дата добавления: 2014-12-08; Просмотров: 7159; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |