Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Доверительные интервалы прогноза





Вопрос 4. Доверительные интервалы прогноза. Оценка адекватности и точности моделей

 

Заключительным этапом применения кривых роста яв­ляется экстраполяция тенденции на базе выбранного уравнения. Прогнозные значения исследуемого показателя вычисляют путем подстановки в уравнение кривой значений времени t, соответ­ствующих периоду упреждения. Полученный таким образом прогноз называют точечным, так как для каждого момента времени опреде­ляется только одно значение прогнозируемого показателя.

На практике в дополнении к точечному прогнозу желатель­но определить границы возможного изменения прогнозируемого по­казателя, задать «вилку» возможных значений прогнозируемого пока­зателя, т.е. вычислить прогноз интервальный.

Несовпадение фактических данных с точечным прогнозом, полученным путем экстраполяции тенденции по кривым роста, может быть вызвано:

1) субъективной ошибочностью выбора вида кривой;

2) погрешностью оценивания параметров кривых;

3) погрешностью, связанной с отклонением отдельных наблю­дений от тренда, характеризующего некоторый средний уровень ряда на каждый момент времени.

Погрешность, связанная со вторым и третьим источником, мо­жет быть отражена в виде доверительного интервала прогноза. До­верительный интервал, учитывающий неопределенность, связанную с положением тренда, и возможность отклонения от этого тренда, опре­деляется в виде:

, (5.26)

где п - длина временного ряда;

L - период упреждения; - точечный прогноз на момент n+L;

ta - значение t-статистики Стьюдента;

Sp - средняя квадратическая ошибка прогноза.

Предположим, что тренд характеризуется прямой:

Так как оценки параметров определяются по выборочной совокупности, представленной временным рядом, то они содер­жат погрешность. Погрешность параметра а0 приводит к вертикально­му сдвигу прямой, погрешность параметра а1 изменению угла на­клона прямой относительно оси абсцисс. С учетом разброса кон­кретных реализаций относительно линий тренда, дисперсию S2p можно представить в виде:



, (5.27)

где: Sy2 -дисперсия отклонений фактических наблюдений от расчетных;

tl - время упреждения, для которого делается экстраполяция, tl = n + L;

t - порядковый номер уровней ряда, t=1, 2,..., п;

- порядковый номер уровня, стоящего в середине ряда, ;

Тогда доверительный интервал можно представить в виде:

. (5.28)

Обозначим корень в выражении (5.28) через К. Значение К за­висит только от п и L, т.е. от длины ряда и периода упреждения. Поэтому можно составить таблицы значений К или К*= taK . Тогда интервальная оценка будет иметь вид:

. (5.29)

Выражение, аналогичное (5.28), можно получить для полинома второго порядка:

(5.30)

или

. (5.31)

Дисперсия отклонений фактических наблюдений от расчетных определяется выражением:

, (5.32)

где: yt - фактические значения уровней ряда,

-расчетные значения уровней ряда,

п - длина временного ряда,

k - число оцениваемых параметров выравнивающей кривой.

Таким образом, ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома. Чем выше степень полинома, тем шире доверительный интер­вал при одном и том же значении Sy, так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствую­щих параметров уравнения.

 

Рис. 5.4. Доверительные интервалы прогноза для линейного тренда

 

Доверительные интервалы прогнозов, полученных с использо­ванием уравнения экспоненты, определяют аналогичным образом. От­личие состоит в том, что как при вычислении параметров кривой, так и при вычислении средней квадратической ошибки используют не сами значения уровней временного ряда, а их логарифмы.

По такой же схеме могут быть определены доверительные ин­тервалы для ряда кривых, имеющих асимптоты, в случае, если значе­ние асимптоты известно (например, для модифицированной экспонен­ты).

В таблице 5.4 приведены значения К* в зависимости от длины временного ряда п и периода упреждения L для прямой и параболы. Очевидно, что при увеличении длины рядов (п) значения К* умень­шаются, с ростом периода упреждения L значения К* увеличиваются. При этом влияние периода упреждения неодинаково для различных значений п: чем больше длина ряда, тем меньшее влияние оказывает период упреждения L.

 

 

Таблица 5.4

Значения К* для оценки доверительных интервалов прогноза на основе линейного тренда и параболического тренда при доверительной вероятности 0,9 (7)

Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой




Дата добавления: 2014-12-08; Просмотров: 2655; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.