Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция №8




Статистика газов. Микроскопические и макроскопические явления. Статистический и термодинамический методы исследования. Идеальный газ как статистическая система многих частиц. Основы молекулярно-кинетической теории. Давление, объем и температура газа как обобщенные ха­рактеристики состояния газа. Явления переноса в газах. Столкновение молекул. Средняя длина свободного пробега молекул. Диффузия. Осмос. Теплопроводность. Вязкое трение.

8.1. Микроскопические и макроскопические явления. Статистический и термодинамический методы исследования. Идеальный газ как статистическая система многих частиц. Основы молекулярно-кинетической теории. Давление, объем и температура газа как обобщенные ха­рактеристики состояния газа.

Системой называют конечную область пространства с находящимися в ней физическими объектами исследования.

Граница системы может быть как материальной (стенки сосуда), так и воображаемой; неподвижной или движущейся; проницаемой или непроницаемой. Система характеризуется не только особенностями своей границы, но и физическими или химическими свойствами вещества, находящегося в занимаемой системой области пространства.

Макроскопическими системами называют системы, содержащие большое количество физических объектов. Термодинамические макроскопические системы содержат большое количество молекул (атомов, ионов). Различают разные виды термодинамических систем (ТС): закрытые, открытые, адиабатные и изолированные.

Закрытые ТС это системы, не обменивающиеся веществом с другими системами.

Открытые ТС это системы, обменивающиеся веществом и энергией с другими системами.

Адиабатные ТС это системы, в которых нет теплообмена с другими системами.

Изолированные ТС это системы, не обменивающиеся с другими системами ни энергией, ни веществом.

Для описания макросистем в молекулярной физике используют основные параметры состояния – температуру, давление, объём. Любое теоретическое описание реальных систем возможно только на основе той или иной модели, в которой учитывают определённые особенные свойства, а второстепенными пренебрегают. В молекулярной физике рассматривают следующие основные модели: идеальный газ, реальный газ, идеальная жидкость, реальная жидкость, твердое тело, плазма.

Макросистемы могут находиться в равновесном и неравновесном состоянии.

Равновесными состояниями называют такие, при которых макроскопические величины, описывающие поведение изолированной системы, остаются неизменными во времени и одинаковыми в пространстве.

В неравновесном состоянии макровеличины, характеризующие состояние системы, изменяются в пространстве и во времени, при этом в системе возникают потоки вещества и энергии (явления переноса).

Неравновесные состояния сложных систем изучают, используя методы физической кинетики.

Макроскопические системы могут быть линейными и нелинейными. В слабо неравновесных состояниях, где градиенты величин малы, переносимые потоки и силы, вызывающие их, линейно зависят от градиентов. В сильно неравновесных состояниях, где градиенты величин велики, потоки являются более сложными функциями градиентов.

При изучении состояния систем используют термодинамический и статистический подходы.

Термодинамический подход. Систему рассматривают без учета её внутренней структуры. При этом используют понятия и величины, относящиеся к системе в целом. Например, идеальный газ в состоянии равновесия характеризуют объёмом, давлением и температурой (V, P и T). Экспериментально устанавливают связь между этими величинами. Для термодинамического подхода характерно использование термодинамических потенциалов для описания систем, находящихся в равновесном или слабо неравновесном состоянии. Для сильно неравновесных нелинейных систем описание состояния через потенциалы невозможно.

Статистический подход. Динамическое описание системы, содержащей большое число частиц, невозможно. Для изучения макросистем применяют статистические методы, использующие понятия и величины, относящиеся не к отдельным частицам, а к большим совокупностям частиц. Законы поведения совокупностей большого числа частиц, использующие статистические методы, называются статистическими закономерностями. Эти закономерности, как и величины, описывающие состояние системы, зависят от того, в каком состоянии находится система: равновесном или неравновесном.




Поделиться с друзьями:


Дата добавления: 2014-12-10; Просмотров: 474; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.