Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Момент инерции тела




Моментом инерции материальной точкимассой относительно какой-либо оси z называется произведение массы точки на квадрат кратчайшего расстояния от этой точки до оси,

.

Соответственно, для системы материальных точек,

, (42)

- масса -той точки, - кратчайшее расстояние от -той точки до оси z.

Для сплошных тел момент инерции определяется через интеграл

, (43)

- расстояние от элемента массы тела до оси z.

Единица измерения момента инерции – [ J ] =кг·м2.

Моменты инерции однородных тел простой геометрической формы обычно рассчитывают по формуле (43), а сложной определяют экспериментально. В таблице 1 приведены моменты инерции некоторых тел.

 

 

Таблица 1. Моменты инерции некоторых тел.

 
 

 

 

Теорема Штейнера. Если для какого-либо тела известен его момент инерции относительно оси , проходящей через центр масс тела, то момент инерции этого тела относительно оси , параллельной , равен

, (44)

- масса тела, - кратчайшее расстояние между осями и .




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 499; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.