КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
КАРНАП (Carnap) Рудольф (1891—1970) — немецко-американский философ и логик 1 страница
КАНТОР (Cantor) Георг (1845—1918) — немецкий математик, логик, теолог, создатель теории трансфинитных (бесконечных) множеств, оказавшей определяющее влияние на развитие математических наук на рубеже 19— 20 вв. КАНТОР (Cantor) Георг (1845—1918) — немецкий математик, логик, теолог, создатель теории трансфинитных (бесконечных) множеств, оказавшей определяющее влияние на развитие математических наук на рубеже 19— 20 вв. Окончил Университет Берлина (1867), профессор Университета Халле (1879—1913). Главный труд: "Основы общего учения о многообразиях" (1902). Исследования К., инициированные необходимостью решения насущных проблем теории бесконечных рядов Фурье, стали основой для дальнейших фундаментальных исследований в направлении теории числовых множеств, где им были введены: общее определение множества, трансфинитные числа, общее понятие "мощность множества" (как количество элементов множества), мощности различных трансфинитных множеств. Под множеством К. понимал "...вообще всякое многое, которое можно мыслить как единое, т.е. всякую совокупность определенных элементов, которая может быть связана в одно целое с помощью некоторого закона...". Основополагающим в понятии множества является акт объединения различных объектов в единое целое, определяемое как множество. Элементами множеств могут быть любые объекты реальной дейсвительности, человеческой интуиции или интеллекта. Наличие в определении К. словосочетания "...совокупность определенных элементов, которая может быть связана в одно целое с помощью некоторого закона..." полностью определяет множество его элементами или законом (характеристическими признаками, свойствами), согласно которому происходит акт объединения различных объектов в единое целое — множество. Поэтому фундаментальным понятием теории множеств является не само понятие множества, а отношение принадлежности объектов множеству. К Аристотелю восходит традиция разделения бесконечности на актуальную и потенциальную: "Остается альтернатива, согласно которой бесконечное имеет потенциальное существование... Актуально бесконечное не существует" (Аристотель, "Физика"). Эта традиция продолжалась Декартом ("Бесконечность распознаваема, но не познаваема") и даже во времена К.Гаусса ("В математике бесконечную величину никогда нельзя использовать как нечто окончательное; бесконечность — не более чем façon de parle /манера выражаться — С. С /, означающая предел, к которому стремятся одни величины, когда другие бесконечно убывают"). К., как писал М.Клайн, отошел от давней традиции "уже тем, что рассматривал бесконечные множества как единые сущности, притом сущности, доступные человеческому разуму". Резко расходясь со своими коллегами-математиками во взглядах на математическую бесконечность, К. мотивировал необходимость введения актуально бесконечных множеств тем, что "потенциальная бесконечность в действительности зависит от логически предшествующей ей актуальной бесконечности". Классическим примером актуально бесконечного множества по К. являются десятичные разложения иррациональных чисел, т.к. каждый "конечный отрезок такого разложения дает лишь конечное приближение к иррациональному числу". К 1873 относится начало исследований К. по классификации актуально бесконечных множеств. Немного позднее К. определил бесконечное множество как множество, для которого существует взаимно однозначное соответствие с его собственным подмножеством (т.е. отличным от всего множества). Одним из следствий такого подхода стала, например, возможность установления взаимно однозначного соответствия между точками прямой линии и точками многообразия любой размерности. Основываясь на собственном определении бесконечных множеств, К. смог установить для каждой пары из них отношение эквивалентности (равномощности). В 1874 К. доказал несчетность множества всех действительных чисел, установив при этом существование пар бесконечных множеств, имеющих различные мощности (неэквивалентных множеств). Систематически основы своей теории математической бесконечности К. изложил в 1879—1884. Основанием иерархии бесконечностей К. стала доказанная в первой половине 1890-х широко известная теорема К.-Бернштейна: "если два множества А и В таковы, что существует взаимно однозначное соответствие между множеством А и подмножеством множества В и между множеством В и подмножеством множества А, то возможно установить также и взаимно однозначное соответствие между множеством А и множеством В", т.е. установить равномощность (эквивалентность) множеств А и В. При этом, К. определял, что если множество А возможно поставить во взаимно однозначное соответствие с собственным подмножеством В, а множество В невозможно поставить во взаимно однозначное соответствие с собственным подмножеством А, то множество В по определению больше множества А. По мнению М.Клайна, такое определение обобщает на случай бесконечных множеств то, что "непосредственно очевидно в случае конечных множеств". Следуя данному подходу, К. доказал, что для любого "заданного множества всегда найдется множество, большее исходного" (например, множество всех подмножеств данного множества больше первоначального множества). То, что между двумя мощностями возможно установление отношений "равенство", "больше" и "меньше", дало К. основание назвать "числами" символы обозначения мощностей бесконечных множеств (для конечных множеств символы обозначения их мощности суть числа натурального ряда, определяющие количество элементов в каждом из эквивалентных конечных множеств). В отличие от чисел натурального ряда [ординальных чисел /от нем. Die Ordinalzahl (Ordnungzahl) — числительные порядковые — C.C.I, К. назвал кардинальными числами (от нем. Die Kardinalzahl — числительные количественные)] "числа" обозначения мощности бесконечных множеств. К. считал, что область определенных величин не исчерпывается конечными величинами, т.к. об "актуальном бесконечном также возможно доказательное знание". Если понятие мощности было расширенным понятием "количество" для бесконечных множеств, то понятие кардинального числа стало расширенным обобщением понятия "числа вообще". Расширение К. понятия "числа" в область Бесконечного ознаменовало переход математики на качественно новый уровень мышления. Фактически, мощность множеств по К. отражает в сознании человека-исследователя определенные отношения множеств, т.е. мощность множеств по К. — это наиболее общая характеристика эквивалентных бесконечных множеств. Больцано еще в начале 19 в. пришел к понятию взаимно однозначного соответствия между множествами (а, следовательно, и к понятию мощностей множеств и выражению их кардинальными числами). Однако под "количеством" до середины 19 в. понималась величина. А так как каждую величину посредством избранной единицы измерения возможно выразить числом, то представление о количестве ассоциировалось с понятием числа. Поэтом Больцано был вынужден отступить перед серьезными затруднениями, вытекавшими из понятия "количество". Математика того времени вообще определялась как наука, исследующая зависимости между величинами и выражающими их числами. Однако, как пишет В.А.Волков, "как бы ни были важны различные виды величин и зависимости между ними для практических приложений математики, они охватывают далеко не все богатства различных количественных отношений и пространственных форм действительного мира". К. также было введено в математику понятие "предельная точка производного множества", построен пример совершенного множества ("множество К."), сформулирована одна из аксиом непрерывности ("аксиома К."). Следствия из теории К. выявили противоречия в достаточно серьезно изученных областях оснований математики. Эти противоречия лидеры математики того времени назвали парадоксами (антиномиями) по одной той причине, что парадокс "может быть объяснен, а математиков не покидала надежда, что все встретившиеся трудности им в конце концов удастся разрешить". Теорию математической бесконечности К., в отличие от большинства ведущих математиков того времени, поддерживали Рассел и Гильберт. Рассел, считая К. одним из великих мыслителей 19 в., писал в 1910, что решение К. проблем, "издавна окутывающих тайной математическую бесконечность, является, вероятно, величайшим достижением, которым должен гордиться наш век /20 в. — С.С./ ".Гильберту в 1926 представлялось, что теория К. — это "самый восхитительный цветок математической мысли и одно из величайших достижений человеческой деятельности в сфере чистого мышления". А Э.Борель и А.Лебег уже в самом начале 20 в. обобщили понятие интеграла и развивали теории меры и измерений, в основании которых лежала теория К. К 1897 К. был вынужден прекратить активные математические исследования вследствие резкого сопротивления его идеям (в частности, со стороны Л.Кронекера, называвшего К. шарлатаном), выдвинув так называемый "закон сохранения невежества": "нелегко опровергнуть любое неверное заключение, коль скоро к нему пришли и оно получило достаточно широкое распространение, причем, чем менее оно понятно, тем более упорно его придерживаются". К. всегда разделял философские идеи Платона и верил в то, что в окружающем нас Мире "идеи существуют независимо от человека. И чтобы осознать реальность этих идей, необходимо лишь задуматься над ними". К., будучи в соответствии с давней религиозной традицией своей семьи ревностным лютеранином, в своих высказываниях часто применял и теологическую аргументацию. Особенно это проявилось после отхода его от занятий математикой. C.B. Силков КАРНАВАЛ — культурный и массовый поведенческий феномен, фундированный соответствующим "типом образности" (М.М.Бахтин). КАРНАВАЛ — культурный и массовый поведенческий феномен, фундированный соответствующим "типом образности" (М.М.Бахтин). Выступал значимым компонентом средневековой и ренессансной народной культуры. Используется в современной философии культуры. Многомерный анализ К. в культурологическом контексте был впервые осуществлен в книге М.М.Бахтина "Творчество Франсуа Рабле и народная культура средневековья и "Ренессанса" (первый вариант рукописи был завершен в 1940; первое издание — Москва, 1965; переведена на многие языки). Отказавшись от традиционалистских описаний социального фона эпохи Возрождения и от рассмотрения передовых взглядов Рабле-гуманиста, Бахтин сосредоточился на исследовании античных и особенно средневековых истоков романа Рабле "Гаргантюа и Пантагрюэль". Бахтину удалось понять и разгадать (в контексте реконструкции, по мысли академика АН СССР М.П.Алексеева, "народно-фольклорной традиции средневековья") ряд особенностей изучаемого произведения, давно казавшихся исследователям очень странными. Присущее "Гаргантюа и Пантагрюэлю" парадоксальное сочетание многочисленных "ученых" образов и простонародной (а часто и непристойной) комики Бахтин объяснил значимым воздействием на Рабле площадной смеховой культуры средневековья, возникшей в гораздо более ранний период, но достигшей своего полного расцвета к 16 в. По мнению Бахтина, не только Рабле, но и Дж.Бокаччо, У.Шекспир, М.Сервантес оказались подвластны обаянию жизнеутверждающей и светлой атмосферы, свойственной К. и другим народным праздникам того времени. Карнавальная культура обладала хорошо разработанной системой обрядово-зрелищных и жанровых форм, а также весьма глубокой жизненной философией, основными чертами которой Бахтин считал универсальность, амбивалентность (т.е. — в данном случае — восприятие бытия в постоянном изменении, вечном движении от смерти к рождению, от старого к новому, от отрицания к утверждению), неофициальность, утопизм, бесстрашие. В ряду обрядово-зрелищных форм народной средневековой культуры Бахтин называл празднества карнавального типа и сопровождающие их (а также и обычные гражданские церемониалы и обряды) смеховые действа: "праздник дураков", "праздник осла", "храмовые праздники" и т.д. Народная культура воплощалась также в различных словесных смеховых произведениях на латинском и на народных языках. Эти произведения как устные, так и письменные, пародировали и осмеивали буквально все стороны средневековой жизни, включая церковные ритуалы и религиозное вероучение ("Вечерня Киприана", многочисленные пародийные проповеди, литургии, молитвы, псалмы и т.д.). Веселая вольница карнавального празднества порождала разнообразные формы и жанры неофициальной, а чаще всего и непристойной фамильярно-площадной речи, в значительной мере состоящей из ругательств, клятв и божбы. На карнавальной площади всегда настойчиво звучали возгласы балаганных зазывал, которые — вместе с другими "жанрами" уличной рекламы ("крики Парижа", крики продавцов чудодейственных средств и ярмарочных врачей) — обыгрывались и пародировались, становясь при этом важным элементом народной смеховой культуры. По мысли Бахтина, Рабле объединил в романе "Гаргантюа и Пантагрюэль" все эти формы, жанры и мотивы, сохранив их для потомков и создав тем самым своего рода "энциклопедию" средневекового смеха. Причем, с точки зрения Бахтина, опора на смеховую народную культуру не только не противоречила гуманистическим идеалам Рабле, но, напротив, гармонично сочеталась с ними и даже помогала их пропаганде, поскольку "карнавальное мироощущение является глубинной основой ренессансной литературы". Как отмечает Бахтин в книге "Творчество Франсуа Рабле и народная культура средневековья и "Ренессанса", "как бы ни были распылены, разъединены и обособлены единичные "частные" тела и вещи — реализм Ренессанса не обрезывает той пуповины, которая соединяет их с порождающим телом земли и народа". Например, "реабилитация плоти", характерная для гуманизма, соотносима и сродственна с "гротескной концепцией тела", с преобладанием "материально-телесного начала жизни", присущим народной культуре. Смеховая народная культура, будучи древней, архаичной по своим истокам, тем не менее предвосхитила некоторые фундаментальные философские концепты, которые специфичны для Нового времени. Согласно оценке Л.Е.Пинского, "в эпоху Ренессанса нерушимую иерархическую вертикаль средневекового официального представления о космосе ("Великую Цепь Бытия") сменила историческая горизонталь: движение во времени. В гротескной концепции тела, переживающего становление в народно-праздничных играх, предметом которых был веселый ход времени, рождалось новое историческое чувство жизни и представление о прогрессе человечества". Ср. в тексте книги Бахтина: "И вот гротескные образы с их существенным отношением к временной смене и с их амбивалентностью становятся основным средством художественно-идеологического выражения того могучего чувства истории и исторической смены, которое с исключительной силою пробудилось в эпоху Возрождения". Именно поэтому понять Рабле и вообще ренессансную литературу невозможно без учета их связи с народной смеховой культурой. Средневековый смех интерпретируется в книге Бахтина как имеющий "универсальный и миросозерцательный характер, как особая и притом положительная точка зрения на мир, как особый аспект мира в целом и любого его явления". К. (этому термину Бахтин придавал расширенное значение, понимая под ним "не только формы карнавала в узком и точном смысле, но и всю богатую и разнообразную народно-праздничную жизнь средних веков и Возрождения") противопоставил серьезной, высокой культуре средневековья "совершенно иной, подчеркнуто неофициальный, внецерковный и внегосударственный аспект мира, человека и человеческих отношений". К. не просто разыгрывали, это была "как бы реальная... форма самой жизни", которой люди средневековья жили во время праздников, — причем "другая свободная (вольная)", "идеальная" форма. Если официальные праздники утверждали стабильность, неизменность и вечность существующего миропорядка, освящали торжество уже победившей, господствующей, непререкаемой "правды", то К. "был как бы временной приостановкой действия всей официальной системы со всеми ее запретами и иерархическими барьерами": в это время жизнь на короткий срок выходила из своей обычной колеи и вступала "в сферу утопической свободы". Эта свобода была легализована: и государство, и церковь терпели ее, даже каждый официальный праздник имел свою вторую, народно-карнавальную, площадную сторону. Праздничная толпа воспринимала жизнь сквозь призму "веселой относительности", во время К. люди переодевались (обновляли свои одежды и свои социальные образы), избирали, а затем развенчивали и избивали (в символическом плане "умерщвляли") шутовских королей и пап, высмеивали, снижали, пародировали все, чему поклонялись в обычные дни, предавались различным физиологическим излишествам, пренебрегая нормами приличий: "Тема рождения нового обновления, органически сочеталась с темой смерти старого в веселом и снижающем плане, с образами шутовского карнавального развенчания". В гротескной образности К. всячески подчеркивался момент временной смены (времена года, солнечные и лунные фазы, смерть и обновление растительности, смена земледельческих циклов): "этот момент приобретал значение более широкое и более глубокое: в него вкладывались народные чаяния лучшего будущего, более справедливого социально-экономического устройства, новой правды". Обилие пиршественных образов, гиперболическая телесность, символика плодородия, могучей производительной силы и т.д. акцентировали бессмертие народа: "В целом мира и народа нет места для страха; страх может проникнуть лишь в часть, отделившуюся от целого, лишь в отмирающее звено, взятое в отрыве от рождающегося. Целое народа и мира торжествующе весело и бесстрашно". С эстетической точки зрения, карнавальная культура представляет собой особую концепцию бытия и особый тип образности, в основе которых, по мнению Бахтина, "лежит особое представление о телесном целом и о границах этого целого". Это представление Бахтин определяет как гротескную концепцию тела, для которой характерно то, что с точки зрения "классической" эстетики ("эстетики готового, завершенного бытия") кажется чудовищным и безобразным. Если классические образы индивидуализированы, отделены друг от друга, как бы очищены "от всех шлаков рождения и развития", то гротескные обра- зы, напротив, показывают жизнь "в ее амбивалентном, внутренне противоречивом процессе", концентрируются вокруг моментов, обозначающих связь между различными телами, динамику, временную смену (совокупление, беременность, родовой акт, акт телесного роста, старость, распадение тела и т.д.). "В отличие от канонов нового времени гротескное тело не отграничено от остального мира, не замкнуто, не завершено, не готово, перерастает себя самого, выходит за свои пределы. Акценты лежат на тех частях тела, где оно либо открыто для внешнего мира, то есть где мир входит в тело или выпирает из него, либо оно само выпирает в мир, то есть на отверстиях, на выпуклостях, на всяких ответвлениях и отростках: разинутый рот, детородный орган, груди, фалл, толстый живот, нос" (Бахтин). Этот тин образности, характерный для народной смеховой культуры, обусловлен верой народа в свое бессмертие: "... в гротескном теле смерть ничего существенно не кончает, ибо смерть не касается родового тела, его она, напротив, обновляет в новых поколениях". Концепция К., выдвинутая в книге Бахтина о Рабле, вызвала при своем появлении и публикации бурные споры, да и до сих пор далеко не является общепризнанной. Однако она сыграла большую роль в развитии и стимулировании культурологических исследований, в расширении горизонтов научной мысли. В настоящее время истолкование концепции К. продолжается, и возможно как появление ее оригинальных истолкований, так и ее плодотворное использование для изучения различных мировых культур. Многомерные исследования карнавальной культуры, осуществленные Бахтиным, способствовали, в частности, легитимации такого феномена культуры, как "раблезианство". Раблезианство трактовалось, как связанное не столько непосредственно с творчеством Ф.Рабле, сколько с традицией его философской интерпретации, в рамках которой культурное пространство выстраивается в контексте семиотически артикулированной телесности, понятой в качестве семантически значимого феномена (текста), прочтение которого порождает эффект гротеска, что и придает культурному пространству статус карнавального (см. Тело, Телесность, Текст, Бахтин М.М.). H.A. Паньков КАРНАП (Carnap) Рудольф (1891—1970) — немецко-американский философ и логик. В 1910—1914 изучал физику и математику в университетах Фрейбурга и Йены. Докторская степень за работу ''Пространство" (1921). Преподавал философию в Венском университете (с 1926) и Немецком университете в Праге (с 1931). После эмиграции в США (1935) — профессор Чикагского (до 1952), Принстонского (1952—1954) и Калифорнийского университетов (возглавлял философское отделе- ние с 1954 по 1961). Ведущий представитель Венского кружка, логического позитивизма и философии науки. Один из основателей журнала "Erkenntnis" (1930), целью которого выступало распространение идей "научной философии". Основные сочинения: "Логическое построение мира" (1928), "Мнимые проблемы в философии" (1928), "Преодоление метафизики логическим анализом языка" (1931), "Физикалистский язык как универсальный язык науки" (1932), "О протокольных предложениях" (1932), "Логический синтаксис языка" (1934), "Философия и логический синтаксис" (1935), "Проверяемость и значение" (1936—1937), "Исследования по семантике" (1942—1947), "Значение и необходимость" (1947), "Введение в символическую логику" (1954) и др. Уже в первой работе — "Логическое построение мира" — К. сформулировал идею о возможной основе единства знания: по его мнению, физика и психология, науки о природе и науки о культуре способны объединиться в том случае, если окажутся в состоянии перевести содержательный язык о "переживаниях", "вещах" и т.п. на формальный лексикон, описывающий структуры и отношения. С точки зрения К., центральным в теории познания правомерно полагать пошаговое отслеживание главных этапов трансформации содержания наших высказываний об интересующих нас объектах в процессе их обоснования посредством "гносеологически элементарной основы". По К., именно дефиниционный, интерсубъективный мир отношений и образует предметную область науки. Поскольку, по К., цепь гносеологического отношения сведения к элементарным предложениям потенциально разнонаправлена, критерием того, что именно гносеологически выступает более фундаментальным, выступает познавательный "приоритет": объект гносеологически первичен по отношению к другому, гносеологически вторичному, если второй постигается посредством первого. К. разрабатывал неопозитивистскую модель организации научного знания, утверждая, что предметом философии науки является анализ структуры естественно-научных дисциплин с целью уточнения основных понятий науки при помощи аппарата математической логики. (Согласно мысли К., "наука представляет собой единство... все эмпирические предложения выразимы в едином языке, а все положения дел относятся к одному виду и познаются с помощью одного метода".) Сами элементы непосредственного опыта при этом не могут включаться в логическую систему; отношением же, выразимым в терминах опыта и подходящим для целей логики, выступает у К. отношение сходства в памяти, заключающееся в тождестве или близком сходстве зафиксированных фрагментов опыта. На этом фундаменте и должна основываться, по версии К., вся "система знания" и "оправдывающего его анализа". Иерархия компонентов универсальной логическо-опытной цепи выглядит, по схеме К., так: области качеств, классы качеств, сходства качеств, классы ощущений, например зрительные ощущения, различение индивидуальных и общих компонент опыта, зрительная перспектива, порядок цветов и временной порядок. Конструкции зрительной перспективы и временной последовательности конституируют, по мысли К., основу для материальных объектов, ибо последние уже могут быть образованными посредством апплицирования цвета на движущиеся точки мира. Над уровнем высказываний о физическом мире располагается уровень высказываний об опыте других людей, переводимый на язык высказываний о физическом мире (или в физических терминах о поведении). Далее — уровень высказываний о социальных и культурных отношениях в свою очередь сводимый к высказываниям о чужих сознаниях. К. определял "протокольные предложения" как: а) сферу языка физики, — образующие, по его мысли, "основание науки"; б) предложения, "отсылающие к непосредственно данному и представляющие прямое описание опыта или феноменов"; в) "утверждения, не нуждающиеся в обосновании и служащие фундаментом для остальных научных утверждений"; г) не относящиеся к языку науки постольку, поскольку их структура не определяется в этом языке (хотя существуют специальные правила для их перевода в этот язык). По К., в конечном счете, все высказывания фундируются на высказываниях о непосредственном опыте и полностью определимы в терминах последних. Т.е. ни физические объекты, ни чужие сознания не являются реальными объектами как таковыми, они скорее "квази-объекты", введенные с помощью определений для того, чтобы организовать наш опыт. С точки зрения К., собственно философская проблематика дистанцируется от сферы логики и иных научных дисциплин в контексте того, что все предложения содержательного характера подразделимы на три класса: "научно-осмысленных", или "научных" (истинных и ложных); "научно-неосмысленных", или "вненаучных"; "бессмысленных", которые лишь внешне подобны содержательным предложениям. Философские предложения, по К., — это: а) предложения "вненаучные", ибо они не подлежат ни актуально, ни потенциально какому-либо сопоставлению с реальными фактами; б) "квазисинтаксические" предложения, могущие быть в исходном имплицитном виде интерпретированы в самом широком диапазоне версий; в) предложения, содержащие рациональный смысл лишь в аспекте реконструкции с их помощью связей и отношений между словами. (Философия трактовалась К. лишь как "суррогат искусства", а ее представители, как "музыканты, лишенные способности к музыке". Одновременно он утверждал, что "логика науки заменяет собой запутанный клубок проблем, известный под именем философии".) В своей известной статье "Преодоление метафизики путем логического анализа языка" К. утверждал, что оба — и сам метафизик, и читатель его трактатов — заблуждаются, предполагая наличие в сочинениях подобного рода чего-то реального: "В сфере метафизики, включая всякого рода философию ценностей и нормативные науки, логический анализ приводит к тому негативному результату, что все предложения этой сферы совершенно бессмысленны". По мнению К., в основании системы научных знаний должны размещаться абсолютно достоверные, адекватно воспроизводящие чувственные переживания субъекта, "протокольные предложения". Иные составляющие массива науки должны быть подвергнуты процедуре верификации, т.е. сведены к протокольным предложениям. В противном случае предложения рассматриваются как псевдопредложения, не имеющие смысла, и элиминируются из науки. В книге "Философия и логический синтаксис" К. разграничил косвенную и прямую верификацию. Первая предполагала непосредственную верификацию исходного высказывания: на основе уже известного и апробированного посредством верификации закона осуществляется предсказание, конституируются необходимые условия, и предсказание верифицируется. Впоследствии К. преодолел установку на тождественность "осмысленности" и проверяемости предложений, разграничив в структуре качества их верифицируемости саму "проверяемость" и перечень условий их истинности. По К., истинность предложения сводима к формальной возможности его включения в данную систему языка (т.е. проблема истинности у К. локализуема т.обр. в сфере логической семантики). Истинность предложений, таким образом, переставала увязываться с апробацией их неким субъектом науки. Принцип верифицируемости был сведен им к совокупности рекомендаций по построению языка науки ("Проверяемость и значение"): К. пришел к выводу о необходимости обоснования — в рамках данного конструкта — перехода от "переводимости" к "проверяемости". В работе "Философия и логический синтаксис" К. проводит мысль о разграничении двух видов верификации — непосредственной и опосредованной (по его мнению, только "протокольные предложения" могут быть верифицированы непосредственно). Как полагал К., единичные же высказывания — подобно универсальным законам науки — "имеют характер гипотез". Поэтому при опосредованной верификации высказывание, подлежащее верификации, соединяется с другими, уже верифицированными высказываниями, и из них выводятся непосредственно верифицируемые высказывания. К. выдвинул тезис о том, что логика науки есть анализ чисто синтаксических
Дата добавления: 2014-12-16; Просмотров: 516; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |