КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Моменты случайных величин. Асимметрия и эксцесс
Функция Лапласа и ее связь с функцией распределения нормальной случайной величины. 1) Распределение N (0;1) наз-ся станд-ным нормальным..Для стандартного распред-я плотность вер-ти равна: , а ф-я распред-я . Ф-я Лапласа и ф-я распред-я НСВ Х с параметрами связаны соотнош-м: . 2)Получим формулу д/вычисления вер-ти попадания НСВ с параметрами в задан. интервал(α;β) через стандарт-е распред-е :
3) 3σ Вер-ть того, что НСВ отклоняется от своего мат.ожид-япо модулю меньше, чем ε>0, определяется формулой . Если положить , то получим . Отсюда вытекает, что среди 10000 значений НСВ в среднем только 27 выйдут за пределы интервала . Это означает, что практически среди небольшого числа значений Х нет таких, кот. выходят за пределы указанного интервала. Правило 3-х сигм часто применяется д/грубой оценки сигма: . Моментом n-го порядка Х по отн-ию к знач-ию а Mn(a)=M(X-a)n, а=0-начальный момент ύn ф=Ь(Ч)-центральный μn Для ДСВ: ύn= Для НСВ: ύn= Можно показать что справедлива формула: μn= μ2=ύ2-ύ12 μ3=ύ3-3ύ2 ύ1+2ύ12 μ4=ύ4-4ύ1 ύ3+6ύ12 ύ2-3ύ14 На практике при изуч. распределения отличного от норм. необх. колич. оценить эти различия для этого вводятся вспомог.числ. хар-ки ассиметрия и эксцесс.Центр. момент 3-го порядка μ3 характ-ет отклонение распределения СВХ от симметрии относит. мат.ожид.За меру этого отклонения берут число: α = μ3/σ3(х)-коэф.ассиметрии. Ассиметрия всех распред-ий графики которых симметр. относит.прямой х=а=М(х) равна 0. Центр.момент 4-го порядка μ4 служит для хар-ки крутости распред-ия СВ Х по сравнению с крутостью распред-ия НСВ с мат.ожид.и дисп. такими же как и у Х.За меру этой крутости берут число: χ = [ μ4/σ4(х) ] -3 30.Функция распределения, плотность распределения двумерной случайной величины и их свойства. Закон распределения составляющих. Функцией распределения F (x, y) двумерной случайной величины (X, Y) называется вероятность того, что X < x, a Y < y: F (х, у) = p (X < x, Y < y). (8.1) Рис.1Это означает, что точка (X, Y) попадет в область, заштрихованную на рис. 1, если вершина прямого угла располагается в точке (х, у). Плотностью совместного распределения вероятностей (двумер-ной плотностью вероятности) непрерывной двумерной случайной величины называ-ется смешанная частная производная 2-го порядка от функции распределения: . (8.2) Замечание. Двумерная плотность вероятности представляет собой предел отношения вероятности попадания случайной точки в прямоугольник со сторонами Δ х и Δ у к площади этого прямоугольника при Свойства двумерной плотности вероятности.1) f (x, y) ≥ 0 (см. предыдущее замечание: вероятность попадания точки в прямоуголь-ник неотрицательна, площадь этого прямоугольника положительна, следовательно, предел их отношения неотрицателен). 2) (cледует из определения двумерной плотности вероятно-сти). 3) (поскольку это вероятность того, что точка попадет на плос-кость О ху, то есть достоверного события). Условной плотностью φ(х / у) распределения составляющих Х при данном значении Y = у называется . Аналогично определяется условная плотность вероятности Y при Х = х .
Дата добавления: 2014-12-16; Просмотров: 538; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |