КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Режимы движения жидкости
Рядом исследователей (Хеганом в 1869 г., Менделеевым в 1880 г., Рейнольдсом в 1883 г.) было замечено, что существует два принципиально разных режима движения жидкости. Наиболее полно этот вопрос был исследован Рейнольдсом с помощью очень простого прибора (рис. 7).
Прибор состоял из сосуда 1, в котором для создания стационарного потока поддерживался постоянный уровень жидкости, и присоединённой к нему стеклянной горизонтальной трубы 2. в начале опыта слегка приоткрывали кран 3, и из сосуда начинала вытекать исследуемая жидкость. Затем в трубу 2 по её оси через капиллярную трубку 6 из напорной ёмкости 4 с помощью крана 5 подавали подкрашенную струйку жидкости, имеющую одинаковые с рабочей жидкостью плотность и скорость. При малых расходах рабочей жидкости тонкая окрашенная струйка продвигалась внутри трубы, не смешиваясь со всей массой жидкости, т.е. пути частиц рабочей и подкрашенной жидкости в этих условиях прямолинейны и движутся они по параллельным траекториям. Таким образом, подкрашенная струйка распространяется вдоль оси трубы невозмущенной. Такое установившееся течение было названо ламинарным. При достаточно больших расходах (скоростях) жидкости поведение окрашенной струйки иное. Сначала струйка проходит некоторое расстояние в трубе 2, оставаясь невозмущенной, а затем она начинает приобретать волнообразное движение, колеблется из стороны в сторону и, наконец, полностью размывается, смешиваясь с основной массой рабочей жидкости. Это неупорядоченное движение с интенсивным перемешиванием по сечению потока принято называть турбулентным. Экспериментально установлено, что переход от ламинарного режима к турбулентному зависит не только от скорости потока w, но и от физических свойств жидкости (вязкости μ и плотности ρ) и определяющего.
Скорость любого самопроизвольного процесса можно выразить как отношение движущей силы процесса к сопротивлению движения. Движение слоя жидкости происходит под действием разности давлений p1 и p2 с обеих торцевых сторон трубопровода, т. е. движущая сила ∆p = p2 – p1. Оценим скорость движения слоя жидкости, непосредственно прилегающего к стенке трубы w0-тр:
w0-тр = , сопротивлением движению нулевого слоя является сопротивление стенки трубы Rтр, имеющее очень большую величину: w0-тр = , Rтр → 0, w0-тр ≈ 0. Оценим скорость движения первого слоя относительно нулевого. Сопротивлением движению этого слоя является вязкость жидкости μ, тогда: w1-0 = = w ≠ 0, значит w1-тр = w + 0 = w. Аналогично скорость движения второго слоя относительно первого равна w2-1 = (∆p/μ) = w, w2-0 = w + w = 2w, w2-тр = 2w + 0 = 2w. w3-2 =(∆p/μ) = w, w3-тр = 2w + w = 3w, и так далее. Таким образом, при ламинарном течении жидкости распределение скоростей по сечению потока параболическое. Как уже было сказано, в инженерных расчётах обычно используют среднюю скорость wср. В случае ламинарного течения её определяют следующим образом: wср = . При турбулентном движении кривая распределения скоростей по сечению имеет отличный от параболы вид – вершина кривой значительно сглажена (рис.). При этом: wср =wmax·f(Re).
Чем больше Re, тем ближе средняя скорость потока к максимальной.
Дата добавления: 2014-12-16; Просмотров: 878; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |