Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Формула Бейеса




Пусть в условиях рассуждения, относящегося к формуле полной вероятности, произведено одно испытание, в результате которого произошло событие А. Спрашивается, как изменились (в связи с тем, что событие А уже произошло) величины Р(Вk), k =1, 2, …, n?

Найдем условную вероятность РAk). По теореме умножения вероятностей и формуле (8.5) (см. п. 2) имеем

Р(AВk) = Р(A) РA k) = .

Отсюда

 

Наконец, используя формулу полной вероятности, находим

 

(8.9)

 

Формулу (8.9) называют формулой Бейеса. (Томас Бейес, или Байес, (1702—1761) - английский математик)

Пример 8.31. Большая популяция людей разбита на две группы одинаковой численности. Диета одной группы отличалась высоким содержанием ненасыщенных жиров, а диета контрольной группы была богата насыщенными жирами. После 10 лет пребывания на этих диетах возникновение сердечнососудистых заболеваний составило в этих группах соответственно 31 % и 48 %. Случайно выбранный из популяции человек имеет сердечно­сосудистое заболевание. Какова вероятность того, что этот человек принадлежит к контрольной группе?

Решение. Введем обозначения для событий:

А — случайно выбранный из популяции человек имеет сердечно­сосудистое заболевание;

В 1 человек придерживался специальной диеты;

В2 человек принадлежал к контрольной группе.

Имеем = = 0,5, = 0,31, =0,48.

Согласно формуле полной вероятности Р(A) =0,5×0,31+0,5×0,48=0,395.

и, наконец, в силу формулы (8.9) искомая вероятность




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 507; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.