КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Low aspect ratio wings
High-aspect-ratio wings Wing lift coefficient In general case . At small angles of attack and the lift coefficient of a wing is determined by equality . (5.5) In compliance with the linear theory the lift coefficient in compressed gas is determined by the formula , where - lift coefficient of the deformed wing in incompressible gas. It follows from the last ratios, that , . (5.6)
For incompressible fluid we have , where , (refer to section 4.1.1). As and , then . Now should be determined as , where . If assumes that and , then we get a result of a thin airfoil theory , where . Parameter . Approximately , where and . As non-linear lift component is absent for a wing of high aspect ratio , then .
It is possible to use the formula for determination of a derivative of a lift coefficient by angle of attack : , (5.7) where - parameter determined for a transformed wing. Particularly, we have for a tapered wing: . Finally we shall write down the expression , where , . The non-linear additive is calculated under the formula: . (5.8) It is necessary to note, that the conversion linear theory can not be used for connection between compressed and incompressible flows while calculation of the non-linear additive . Thus: .
5.1.3. Extreme small-aspect-ratio wings(). In such case we have and , therefore derivative does not depend on Mach numbers . The non-linear additive is determined by above mentioned formula (5.8). Note: it is possible to notice in the above mentioned formulae for , that the ratio is a function of parameters , and . Parameter - reduced aspect ratio. These parameters can be considered as parameters of similarity and used for creation of the diagrams. So . The analysis of wing lift in a subsonic gas flow: 1. The angle of zero lift does not depend on numbers (Fig. 5.2). 2. The derivative grows with increasing of numbers (Fig. 5.2). 3. The effect of a compressibility (influence of Mach numbers onto the derivative ) decreases with reduction of (it is the reason of spatial flow of low aspect ratio wings) (Fig. 5.3). 4. The non-linear component decreases with increasing of numbers .
5. The effect of a compressibility decreases with increasing of sweep angle (Fig. 5.4). The reason of it - with rising up of sweep angle , the speeds component normal to the leading edge from which depends the characteristic becomes less,. 6. The value of decreases with increasing of numbers (reason - more earlier flow stalling) (Fig. 5.5). For example, for the airplane : at - , and at - .
Using parameters of similarity the dependence looks like it is shown in fig. 5.6. Fig. 5.6. Dependence of a factor on parameters of similarity
Дата добавления: 2014-12-16; Просмотров: 412; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |