Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Карно теоремасы




Карно циклы.

Сурет:Карно циклы.

Карно циклы: a)- тік; б)- кері.

Карно циклы екі изотермиядан 1-2 және 3-4 және екі адиабаттан 2-3 және 4-1 тұрады.1-2 жолының жылуберуші тұрақты температураға T1, мөлшерлі жылулық (q1) жеткізіледі, 3-4 жолымен (q2) жылулық T2 тұрақты температурасымен жылу алмастырушыға алып кетіледі. Kepi Карно циклын іске асыру үшін, барлығы екі жылулық көзі қажет - жылу беруші және жылу қабылдағыш.Изотермиялық процесстегі, меншікті жылулық мөлшері q1 формулаға сәйкес жазылады:

· q1 = RT1 ln(V2/V1)

· q2 = RT2 ln(V3/V4)

Бұл теңдеуден 2-3 адиабаттар үшін табамыз:

· T2/T1 = (V2/V3)k-1

Ал, теңдеу 4-1 адиабаттар үшін:

· T2/T1 = (V1/V4)k-1

Бұдан, V2/V1 = V1/V4 немесе V2/V1 = V3/V4

Жылудинамикасының бірінші заңына сәйкес, алынған l меншікті жұмыс эквивалентті, яғни q1 - q2 = l, ал формулалар Карно пропорциясы деп аталуымен анықталады:q1/T2 = q2/T2

Бұдан:l = q1(1 - q2/q1) = q1(1-T2/T1).

Карно, шексіз жай ағатын (үйкелістен жоғалуы) 1-2-3-4 процессті қарастырған, сол себептен жұмысшы заттар механикалық тепе-теңдікте болады. Бұдан басқа, жұмыстық денемен температура көзі Т1 арасындағы, 1-2 изотерма бойында және Т2, 3-4 бойында шексіз аздаған температура айырмашылығы бар. Сонымен, термиялық тепе-теңдік сақталады. Сондықтан, цикл, қайтымды деп саналады. Бұл циклды, Карноның идеалды циклы деп атайды.

Бірінші теоремасы:жылулық қозғалтқыштың пайдалы әсер коэффициенті туралы теорема. Оны француз оқымыстысы Н.Л.С. Карно (1796 – 1832) тұжырымдаған (1824). Карно теоремасы бойынша Карно циклінің пайдалы әсер коэффициенті [η=(T1–T2)/T1, мұндағы T1 – қыздырғыштың температурасы, T2 – суытқыштың темп-расы] жұмыстық дененің табиғатына және жылулық қозғалтқыштың құралымына тәуелді болмайды, ол тек қыздырғыш (T1) пен суытқыштың (T2) температураларымен ғана анықталады. пайдалы әсер коэффициенті термодинамиканың екінші бастамасын тұжырымдау кезінде маңызды рөл атқарды;

Екінші теоремасы:соққы теориясында – абсолют серпімсіз соққы кезіндегі кинетикалық энергияның кемуі жайлы теорема.Соққы кезіндегі жүйенің кинетикалық энергиясының кемуі, жүйе нүктелерінің кеміген жылдамдықпен қозғалған кезіндегі кинетикалық энергиясына тең.

 

31. Пайдалы әсер коэффициенті. Термодинамиканың екінші бастамасы.
Термодинамиканың екінші бастамасы — статистикалық нысандардың (мысалы, атомбеидардың, молекулалардың) үлкен санынан тұратын жүйелердің өз бетінше ықтималдығы аздау күйден ықтималдығы молырақ күйге ауысу процесін сипаттайтын табиғаттың түбегейлі заңы. Термодинамиканың бірінші бастамасы бойынша энергия сақталады. Энергияның сақталу заңы орындалатын, бірақ табиғатта бақыланбайтын коптеген процестерді кездестіруге болады. Мысалы, ыстық денені салқын денемен жанастырсақ, онда жылу әрқашанда ыстық денеден салқын денеге өтеді. керісінше ешуақытта да болмайды. Егер де жылу салқын денеден ыстық де-неге өткен жағдайда да энергия сақталған болар еді, бірақ мұндай процесс тіптен мүмкін емес. Енді лақтырылған тасты қарастырайық. Ол Жер бетіне құлап түседі. Тас түсіп келе жатқан кезде оның бастапқыдағы потенциалдық энергиясы бірте-бірте кинетикалық энергияға айналып отырады. Ал тас Жер бетІне жеткен кезде, оның кинетикалық энергиясы тас пен Жердің ішкі энер-гиясына айналады (бұл дегеніміз осы денелердің молекулалары жеделірек қозғала бастайды, ал олардың температурасы сәл-пәл көтеріледі дегенді білдіреді). Бірақ ешкім күнІ бүгінге дейін тастыд молекулаларының жылулық қозғалысы энергиясының оның кинетикалық энергиясына айналуының арқасында қайтадан көкке котерілгенін коре алған емес. Мүндай процесс кезінде де энергия сақталар еді, бірақ процесс табиғатта кездеспейді. Табиғатта бола алатын, бірақ оларға кері процесстер таоиғатта мүмкін болмайтын басқа да талай мысалдарды келтіруге болады.
Келтірілген мысалдардағы кері процестер дс отетін болса, олар энергия-ның сақталу заңына ешқандай залал келтіре алмас едІ, энергияның сақталу заңы орындалған болар еді, яғни термодинамиканың бірінші бастамасы орын-далар сді.Процестердің қайтымсыздығын түсіндіру үшін ғалымдар откен ғасырдың екінші жартысында термодинамиканың екінші бастамасы деп аталатын жаңа заңды түжырымдады. Бұл заң бойынша табиғатта қандай процестердің мүмкін, ал қандай процестердің мүмкін болмайтындығын айтып беруге болады. Термодинамиканың екінші бастамасын бірнеше түрде түжырымдауға болады, олардың барлығы да өзара эквивалентті, тең баламалы. Ондай тұжырымдамалардың біреуін Р.Клаузиус берді: табиғи жағдайларда жылу ыстық денеден салқын денеге өтеді, ал салқын денеден ыстық денеге жылу өз бетімен берілмейді. Бүл айтылған тоқтам тек белгілі түрдегі процеске ғана жататын болғандыктан, оны басқа түрдегі процестерге қалай қолдану керек екендігі түсініксіз.Басқа түрдегі процестерді де қамти алатын жалпыламырақ тұжырымдама кажет болды.

 

Пайдалы әсер коэффициенті (ПӘК) – жүйенің (механизмнің) энергияны түрлендіру немесе басқа денеге беру тиімділігін сипаттайтын шама. Ол көбінесе грек әрпі η -мен (этта) белгіленіп, мына өрнек арқылы анықталады:η=A/Q=Q1*Q2/Q

Термодинамиканың екінші заңына сәйкес жылу қозғалтқыштарының Пайдалы әсер коэффициенттерінің Полужирное начертание ең жоғарғы мәні Карно циклі бойынша анықталады. Машиналардың (әр түрлі қондырғылардың) Пайдалы әсер коэффициенті олардың әрбір элементтерінің жылулық, механикалық т.б. Пайдалы әсер коэффициенттері мен оның экономиялық, техникалық, т.б. Пайдалы әсер коэффициенттеріне ажыратылады. Жүйенің (механизмнің) толық Пайдалы әсер коэффициенті оның дербес элементтерінің Пайдалы әсер коэффициентінің көбейтіндісіне тең:

η = (An+1)/A1 = η1ˑ η2 ˑ...ˑ ηn = ηi

“ Пайдалы әсер коэффициенті ” ұғымы өзінің жалпылама қасиетіне байланысты әр түрлі қондырғыларды (атомдық реакторлар, электр генераторлары, жылу қозғалтқыштары, жартылай өткізгіш құрылғылар, биологиялық объектілер, т.б.) қуаты мен тиімділігіне қарай бір-бірімен салыстыруға мүмкіндік береді.

 

 

32.Тасымал құбылыстары. Жылу өткізгіштік.

Тасымалдау Құбылыстары – физикалық жүйеде электр заряды, масса, импульс, энергия, энтропияның, т.б. физикалық шамалардың кеңістікте тасымалдануы (бөлінуі) арқылы өтетін кинетикалық процестер. Бұл бөлінулер заттың тұтас жүйе ретінде “таза” мех. қозғалысымен де, эл.-магн. күштердің әсерінен де және заттың құрамындағы микробөлшектердің (газ және сұйықтың молекулалары, металл торының электрондары мен оң таңбалы иондары, электролиттің иондары, т.б.) жылулық қозғалысымен де байланысты болады. Жүйеге сыртқы электр өрісінің әсер етуі нәтижесінде, жүйе температурасының құрамының және жүйені құрайтын бөлшектердің (атом, молекула) орташа жылдамдығының кеңістіктік біртекті болмауы салдарынан да Тасымалдау Құбылыстары пайда болады. Физ. шамалардың тасымалдануы олардың градиентіне кері бағытта жүреді.Тасымалдау Құбылыстары жүйені тепе-теңдік күйге жақындатады. Тасымалдау Құбылыстарына электрөткізгіштік (сыртқы электр өрісінің әсерінен электр зарядтарының тасымалдануы және айқас процестер), диффузия (концентрация градиентіне байланысты жүйенің бір бөлігінен екінші бөлігіне массаның тасымалдануы), жылуөткізгіштік (темп-ра градиенті нәтижесінде жылу энергиясының жүйенің бір бөлігінен екіншісіне тасымалдануы), т.б. құбылыстар жатады. Айқас процестер кезінде бір шаманың градиенті басқа шаманың тасымалдануына әкеледі. Мыс., термодиффузия немесе Соре эффектісі – темп-ра градиенті масса ағынын тудырады; керісінше концентрация градиенті есебінен жылу ағыны пайда болады (Дюфур эффектісі). Сыртқы магнит өрісі әсер етпейтін изотроптық жүйелерде термоэлектрлік эффектілер деп аталатын айқас құбылыстар байқалады: екі тізбектеп қосылған әр түрлі өткізгіштердің түрлі темп-радағы түйіндерінде электр тогы жоқ кезде электр қозғаушы күштің (ЭҚК) пайда болуы (Зеебек эффектісі); Пельте эффектісі – тұрақты температурадағы әр түрлі екі өткізгіштің түйіндерінен электр тогы өткенде жылудың бөлінуі немесе жұтылуы; Томсон эффектісі – тогы бар өткізгішті бойлай темп-ра градиенті болғанда жылудың бөлінуі немесе жұтылуы. Сыртқы магнит өрісі әсер ететін изотроптық жүйелерде гальваномагниттік және термомагниттік эффектілер болып саналатын айқас құбылыстар байқалады. Бұл құбылыстар электр тогының әсерінен туындаса оларды гальваномагниттік, ал жылу ағыны есебінен пайда болса термомагниттік деп атайды. Тасымалдау Құбылыстарын кинетик. теория зерттейді.

Жылу өткізгіштік — дененің температура айырмасы бар нүктелері арасында бір нүктеден екінші нүктеге жылу энергиясын жеткізу қасиеті немесе,басқаша айтқанда дененің температурасы жоғары жақтан температурасы төмен жағына қарай жылу өткізу қабілеті. Жылулықтың таралу процессін жалпы алғанда және жылу өткізгіштік сондай-ақ, дененің температурасының таралуымен тығыз байланысты. Сондықтан, алдымен температуралық өріс және температура градиенті ұғымдарымен байланыстығын анықтау керек. Заттардың жылу жүргізгіштігі әр түрлі жэне өте көп санды факторларға байланысты. Газдар үшін, елеулі болып, температурасы мен қысымдары жатады. Мысалы, газ үшін, температураның көбеюінен, жылу жүргізгіштігі артады, ал өте қыздырылған бу үшін, сол сияқты артады, қысымы да, дәл солай артады; сұйықтар үшін, температураның артуынан біраз азаяды. Бұған, су қосылмайды, оның шамамен 120°С температура кезінде, жылу жүргізгіштігі максимумда болады, ал одан ары температурасын көбейткен сайын, судың X кемиді. Көп металлдар үшін, температура ұлғайған сайын, X кемиді. құрылыс материалдары үшін, кеуектілігі мен ылғалдығы ерекше шамасында болады. Кеуектілігі көбейген сайын, X азаяды, себебі материалдардың кеуегі газбен толып, аз жылу өткізгішті болады.

 

 

33.Нақты (реал) газдар. Ван-дер-Ваальс теңдеуі.

Нақты газдар-Бойл-Мариот және Гей-Люссак заңдарына бағынбайтын газдар. Газдардың мінсіз жағдайдан ауытқу мөлшері олардың тығыздығы артқан сайын (қысым жоғары, температура төмен) өсе түседі, яғни газ тамшылары неғұрлым бір-біріне жақын орналасқан сайын, олардың бір-біріне әсері солғұрлым күшейе түседі.Газдың тығыздығы артқан сайын оның қасиеттері идеал газ күйінен ауытқи бастайды. Бұл жағдайда соқтығысулардың рөлі артып, молекулалардың мөлшерлері мен олардың өзара әсерлерін ескермеуге болмай қалады. Мұндай газды нақты (реал) газ деп атайды. Газ алмасу, биологияда – организм мен оны қоршаған орта арасындағы газ алмасу процесі. Адам мен жануарлар организмі тыныс алу кезінде сыртқы ортадан оттекті сіңіріп, өзінен көмі қышқыл газын және зат алмасу нәтижесінде пайда болатын әр түрлі газ қоспаларын сыртқа шығарады. Газ алмасусыз тірі организмде зат және энергия алмасуы дұрыс жүрмейді.

Нақты газдар өзгерісі; pV=mRT/μ

Нақты газдардың өзгерісін сипаттауға ұсынылған көптеген теңдеулердін ішінен Ван-дер-Ваальс теңдеу ең қарапайым,жақсы нәтиже беретін теңдеу болып табылады.

Молекулалардың молшерлері де, молекулалар арарсындағы өзараәрекет-тесу күштері де ескерілген жаңартылған күй теңдеуін 1873 жылы Ван-дер-Ваальс үсынды және ол қазір оның есімімен аталады.Нақты газдардың күй теңдеуі жуықталған тендеу, себебі молекулалардың арасындағы озара өрекеттесу күштерін дәл есептеу әлі де мүмкін болмай отыр. Идеал газдың бір молі үшін жазылған; ρV=RT

Күй теңдеуінде V деп газ түрған ыдыстың колемін түсшеміз. Екінші жағынан онда қозғалып жүрген газ молекулаларынын, кезкелгенінің кезкелген жерде бола алатын көлемі, себебі идеал газдьтң материалдық нүкте-молекулалары үшін ыдыстың кезкелген жері бос, әр молекула үшін ыдыста одан басқа мо-лекула жоқ тәрізді. Шындығында газда ыдыстың барлық көлемі молекулалар үшін бос емсс, себебі әр молекула белгілі келем алып түр және ыдыстың бүл болігінде басқа молекулалар бола алмайды.Бүл жағдайды ескеру үшін ыдыстың көлемінен молекулалар қозғала ал-майтын, олардың оздері алып түрған колемін алып тастау керек.Сонда: ρ(V-b)=RT

мүндағы V-түзету газдың қысымды шексіз арттырған кезде (газ молекулала-рын әбден тығыздаған кезде) алатын шектік көлемі:

V-b=RT/ρ

Ыдыстың қабырғасына жуық орналасқан кез келген молекуланың бір жағындагы "көршілері" екінші жағындағы "көршілерінен" артық, болады да, оған түсірілетін басқа молекулалар тарапынан пайда болатын қорытқы тартылыс күші басы артық молекулалар саны бар жағына қарай, яғни ыдыстың ішіне қарай бағытталады. Осының арқасында ыдыстың қабырғасына түсірілетін кысым қайсыбір шамасына кем болады. Сөйтіп, қысым үшін:

Газдың қысымы үшін өрнекті молекулалар арасындағы тартылыс күшін ескере отырып, былайша жазуға болады:

Осыдан,газдың қысымын, колемін және температурасын байланыстыратын бүл теңдеу нақты газдың күй теңдеуі болып табылады;

Мұнда m— газдың массасы, М- оның молдік массасы, V— газдың алып түрған көлемі.

 

34. Клайперон-Клаузиус теңдеуі. Күй диаграммасы. Үштік нүкте.

Клапейрон - Клаузиус теңдеуі – заттың бір фазадан басқа бір фазаға (булану, балқу, сублимация, т.б.) ауысу процесін сипаттайтын термодинамикалық теңдеу. Клапейрон - Клаузиус теңдеуі бойынша тепе-тең күйде өтетін процестегі L фазалық ауысу жылуы (мысалы, булану жылуы, балқу жылуы) мына өрнек бойынша анықталады:

, мұндағы T – ауысу температурасы (изотермиялық процесс), dp/dT – фазалық тепе-теңдік қисық сызығындағы қысымның температура бойынша алынған туындысы, – 1-фазадан 2-фазаға ауысу кезіндегі зат көлемінің өзгерісі. Клапейрон - Клаузиус теңдеуі француз оқымыстысы Б.П. Э.Клапейрон (1799 – 1864) сұйықтық пен жылулық тепе-теңдікте тұрған конденсацияланған буға арналған Карно циклін талдау нәтижесінде алды (1834). 1850 ж. неміс физигі Р.Клаузиус (1822 – 1888) теңдеуді одан әрі жетілдіріп, оны басқа да фазалық ауысуларға арнап, қорытындылады. Бұл теңдеуді жылуды жұту немесе шығару арқылы өтетін кез келген фазалық ауысуларға қолдануға болады. Клапейрон - Клаузиус теңдеуін шешу үшін L, V1 және V2 шамаларының температура мен қысымға байланысты қалай өзгеретіндігін білу қажет. Мұның өзі күрделі мәселе. Әдетте, бұл тәуелділік тәжірибе жүзінде анықталып, Клапейрон - Клаузиус теңдеуінің сан мәні есептеледі. Клапейрон - Клаузиус теңдеуі таза заттармен қатар ерітінділерге және олардың жеке құраушыларына да қолданылады. Соңғы жағдайда Клапейрон - Клаузиус теңдеуін берілген құраушыдағы будың парциал қысымын, оның парциал булану жылуымен байланыстырады

Үштік нүкте, термодинамикада — заттың үш фазасының да бірдей бір мезгілдегі тепе-теңдік күйіне сәйкес келетін күй диаграммасындағынүкте. Фазалар ережесі бойынша жеке химиялық зат (бір құраушылы жүйе), тепе-теңдік кезінде, үш фазадан артық күйде бола алмайды. Бұл үш фазаның (қатты, сұйық және газ) бір мезгілде тепе-теңдікте болуы температура (Т) мен қысымның (р) белгілі бір мәндерінде ғана жүзеге асады. Мысалы, көмір қышқыл газы (СО2) үшін Тү.н.T 216,6 К, рү.н.р 5,12 атм, су үшін Тү.н.Т 273,16 К (дәл), рү.н.4,58 мм сын. бағ.




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 3790; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.069 сек.