Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Элементы цифровой системы связи




Рис. 1.2. Структурная схема цифровой системы связи.

 

Рис.1.3. - Процесс преобразования дискретного сообщения в сигнал и обратного преобразования сигнала в сообщение

 

Дадим описание каждого блока структурной схемы цифровой системы передачи непрерывных сообщений.

1. Источник информации (сообщения) генерирует сигнал, предназначенный для дальнейшей передачи в канале связи. Этот сигнал должен содержать случайную составляющую, иначе он не будет нести никакой информации.

Источник информации может выдавать данные для передачи по каналу связи как в цифровом виде (современные носители цифровой информации, различные датчики с цифровым интерфейсом и т. д.), так и в аналоговом виде (аналоговые датчики, передача звука и изображения и др.). Независимо от типа источника информации данные должны быть представлены в как можно более сжатом цифровом виде. Процесс эффективного преобразования данных в последовательность двоичных символов называется кодированием источника или сжатием данных. Как правило, данные на цифровых носителях являются уже сжатыми (например, формат цифрового кодирования звуковой информации с потерями MP3, алгоритмы сжатия видеоинформации MPEG, алгоритм сжатия изображений JPEG), тогда как данные с аналоговых источников информации зачастую слишком избыточны и требуют сжатия.

2. Аналогово-цифровой преобразователь. В составе цифрового канала предусмотрены устройства для преобразования непрерывного сообщения в цифровую форму – аналогово-цифровой преобразователь на передающей стороне и устройство преобразования цифрового сигнала в непрерывный – ЦАП на приемной стороне. АЦП посредством импульсно-кодовой модуляции переводит сигнал из аналоговой формы в цифровую, представленную в виде последовательности m-ичных кодовых комбинаций. На приемной стороне ЦАП восстанавливает исходное сообщение по принятым кодовым комбинациям.

 

 

Рис.1.4. Структурная схема АЦП

 

Суть преобразования аналоговых величин заключается в представлении некой непрерывной функции (например, напряжения) от времени в последовательность чисел, отнесенных к неким фиксированным моментам времени. Пусть, к примеру, есть какой-либо сигнал (непрерывный) и для преобразования его в цифровой необходимо этот сигнал представить в виде последовательности определенных чисел, каждое из которых относится к определенному моменту времени. Для преобразования аналогового (непрерывного) сигнала в цифровой необходимо выполнить 3 операции: дискретизация, квантование и кодирование.

Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.

3. Модулятор (лат. modulator — соблюдающий ритм) —устройство, изменяющее параметры несущего сигнала в соответствии с изменениями передаваемого (информационного) сигнала. Этот процесс называют модуляцией, а передаваемый сигнал модулирующим.

По виду управляемых параметров модуляторы делятся на: амплитудные, частотные, фазовые, квадратурные, однополосные и т.д. Если несущими являются импульсные сигналы, то их модулируют с помощью амплитудно-импульсных, частотно-импульсных, время-импульсных и широтно-импульсных модуляторов. Качество работы модуляторов определяется линейностью его модуляционных характеристик.

Модулятор является одной из составных частей передающих устройств радиосвязи, радио- и телевещания. Здесь несущими являются высокочастотные гармонические колебания, а модулирующими - колебания звуковой частоты и видеосигналы. Модуляторы также применяют в радиолокации, системах кодово-импульсной связи, телеуправлении и телеметрии. Модуляторы, преобразующие постоянные напряжения в переменные, применяются в усилителях постоянного тока, работающих по принципу модуляции —демодуляции, для устранения дрейфа нуля и повышения чувствительности аналоговых вычислительных устройств. Устройство, работающее по принципу модулятор-демодулятор, называется модем.

Um
Umu
U(t)
t1
t1
t1
t0
t0
t0
S(t)
 
t
t
SAM(t)
 
Модулирующий сигнал
Радиочастотное колебание
амплитудно-модулированный  

Рис.1.5. Модулирование аналогового сигнала

 

4. Канал связи (англ. channel, data line) — система технических средств или среда распространения сигналов для передачи данных от источника к получателю. В случае использования проводной линии связи, средой распространения сигнала может являться оптическое волокно или витая пара.

Канал связи является составной частью канала передачи данных. Линией связи называется среда, используемая для передачи сигналов от передатчика к приемнику. В системах электрической связи — это кабель или волновод, в системах радиосвязи — область пространства, в котором распространяются электромагнитные волны от передатчика к приемнику.

Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки А системы до точки В. Точки А и В могут быть выбраны произвольно, лишь бы между ними проходил сигнал. Если сигналы, поступающие на вход канала и снимающиеся с его выхода, являются дискретными (по состояниям), то канал называется дискретным. Если входные и выходные сигналы канала являются непрерывными, то и канал называется непрерывным. Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот. Видно, что канал может быть дискретным или непрерывным независимо от характера передаваемых сообщений. Более того, в одной и той же системе связи можно выделить как дискретный, так и непрерывный каналы. Все зависит от того, каким образом выбраны точки А и В входа и выхода канала.

Непрерывный канал связи можно характеризовать так же, как и сигнал, тремя параметрами: временем Tk, в течение которого по каналу ведется передача, динамическим диапазоном Dk и полосой пропускания канала Fk. Также в канале связи на сигнал накладываются помехи, обусловленные различными характеристиками среды распространения.

Важнейшими показателями работы системы связи являются:

- скорость передачи;

- пропускная способность;

- помехоустойчивость.

Кроме того, во всех системах связи должно соблюдаться условие: пропускная способность > скорость передачи.

Под помехоустойчивостью понимают способность системы противостоять вредному влиянию помех на передачу сообщений. Максимальное количество информации, которое может быть передано двоичным символом, получило название бит. Существуют и многие другие параметры, характеризующие с различных точек зрения качества системы связи. К ним относятся скрытность связи, надежность системы, габаритные размеры и масса аппаратуры, стоимость оборудования, эксплуатационные расходы и т. п.

5. Демодулятор, детектор (фр. demodulateur) — электронный узел устройств, отделяющий полезный (модулирующий) сигнал от несущей составляющей.

Переданное сообщение в приемнике обычно восстанавливается в такой последовательности. Сначала принятый сигнал демодулируется. В системах передачи непрерывных сообщений в результате демодуляции восстанавливается первичный сигнал, отображающий переданное сообщение. Этот сигнал затем поступает на воспроизводящее или записывающее устройство.

В системах передачи дискретных сообщений в результате демодуляции последовательность элементов сигнала превращается в последовательность кодовых символов, после чего эта последовательность преобразуется в последовательность элементов сообщения, выдаваемую получателю. Это преобразование называется декодированием.

Операции демодуляции и декодирования – не просто операции обратные модуляции и кодированию. В результате различных искажений и воздействия помех пришедший сигнал может существенно отличаться от переданного. Поэтому всегда можно высказать несколько предположений о том, какое именно сообщение передавалось. Задачей приемного устройства и является принятие решения о том, какое из возможных сообщений действительно передавалось источником. Та часть приемного устройства, которая осуществляет анализ приходящего сигнала и принимает решение о переданном сообщении, называется решающей схемой.

6. Цифро-аналоговый преобразователь (ЦАП) — устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток, напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами

Общие типы электронных ЦАП:

- широтно-импульсный модулятор — простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi-аудиотехнике;

- ЦАП передискретизации, такие как - ЦАП, основанные на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования. Часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования.

- ЦАП взвешивающего типа, в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов и непостоянного импеданса. По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;

- ЦАП лестничного типа (цепная R-2R-схема). В R-2R-ЦАП значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R, называемой матрицей постоянного импеданса. Данная матрица имеет два вида включения: прямое — матрица токов и инверсное — матрица напряжений. Применение одинаковых резисторов позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. ЦАП типа R-2R позволяют отодвинуть ограничения по разрядности. С лазерной подгонкой резисторов на одной подложке достигается точность 20-22 бита. Основное время на преобразование тратится в операционном усилителе, поэтому он должен иметь максимальное быстродействие. Быстродействие ЦАП единицы микросекунд и ниже (то есть наносекунды)

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом.

7. Получатель информации (выход сигнала) – им может служить динамик, экран телевизора, любое воспроизводящее полученный сигнал устройство.

Поскольку человек как получатель информации является ключевым элементом любой телекоммуникационной системы, качество сигнала оценивается по его субъективному восприятию речи. К основным показателям качества принимаемой речи относят: разборчивость (понятность), громкость и натуральность.

Понятность речи - определяющая характеристика тракта передачи речи, так как если тракт не обеспечивает полной понятности речи, то никакие другие его преимущества не имеют значения - он не пригоден к эксплуатации. Для непосредственного определения этой качественной характеристики есть только один метод – субъективно-статистические испытания (ССИ), требующий большого количества речевого материала, обработанного кодеками и трактом передачи, и привлечения группы экспертов (тренированных слушателей и дикторов). Разработан косвенный, объективный количественный метод определения понятности речи через ее разборчивость.




Поделиться с друзьями:


Дата добавления: 2014-12-17; Просмотров: 5190; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.