КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Связь электрического поля с электромагнитными процессами. Область электростатики
В самом начале предыдущей главы (§ 45) мы касались в общих чертах вопроса об электрическом поле и указывали, что его следует рассматривать как одну из сторон того основного электромагнитного процесса, другая сторона которого воспринимается нами как магнитный поток. В различных случаях эта вторая сторона явления может быть выявлена в большей или меньшей степени. Мы указывали, что даже в тех случаях, когда нам кажется, что существует лишь чисто электрическое поле, как самостоятельное явление, при чем никаких сопутствующих магнитных полей как будто бы не наблюдается, на самом деле в какой-либо части системы происходит электромагнитный процесс в скрытом виде. Так, например, в случае заряженного металлического шара, неподвижно стоящего на какой-либо изолирующей стойке, электрическое поле в пространстве, окружающем шар, повидимому, представляет собою нечто в такой степени неизменное, что есть известное основание называть его электростатическим, между тем как это электростатическое поле, так сказать, опирается на поверхность тела, где расположен электрический заряд, элементы которого мы не можем себе представить иначе, как в состоянии непрерывного движения. Весьма возможно, однако, что во многих случаях термин „электростатическое поле" вполне отвечает существу дела, характеризуя собою какую-то статическую деформацию в пространстве, подобную, например, той упругой деформации, которая возникает в стенках резинового шара, когда во внутреннюю полость его будем нагнетать воздух. Но и в приведенном примере статическая деформация в упругой среде не есть самостоятельное нечто, ни с чем не связанное, в действительности же она есть лишь проявление того кинетического процесса, который происходит в массе газа и обусловливает давление на стенки заключающей его камеры.
В параграфах 58 и 59 мы подробнее остановимся на общих признаках; „электростатического поля", а теперь отметим лишь то обстоятельство, что подобное поле всегда рассматривается в каком-либо ограниченном объеме, за пределами которого обязательно имеет место основной процесс электромагнитного характера. Совершенно аналогичную картину мы имеем и в случае магнитного поля, которое иногда нам кажется чем-то самостоятельным, не связанным с явлениями электрического характера. Пример подобного магнитного поля мы имеем в случае постоянного магнита, вне которого поле представляется самостоятельным магнитным полем, а внутрь которого, в область атомных и молекулярных процессов электромагнитного характера, мы можем проникнуть только нашим умственным оком. Та же картина будет и во внешнем пространстве и вокруг некоторой цилиндрической камеры, изготовленной, скажем, из листовой меди, если внутрь этой камеры поместим соответствующую катушку из изолированной проволоки без всякого железного сердечника и пропустим постоянный ток через катушку. Для пояснения всего сказанного выше об электрическом поле рассмотрим случай, аналогичный опыту Фарадея с вращающимся магнитом (§ 4). Представим себе вращающийся вокруг оси цилиндрический магнит NS (рис. 116), простирающийся беспредельно далеко по обе стороны от плоскости PQ, перпендикулярной оси магнита, или же магнит конечной длины, но так расположенный относительно другого неподвижного магнита, чтобы магнитный поток, пронизывающий данный магнит NS, замыкался полностью через неподвижный магнит.
В обоих случаях внешнее магнитное поле в пространстве, непосредственно окружающей вращающийся магнит NS, будет совершенно отсутствовать. В то же время в радиальных элементах вращающегося магнита, по Фарадею, будет индуктироваться ЭДС, которая вызовет электрическое смещение в диэлектрике, окружающем магнит. При этом на поверхности магнита NS появятся электрические заряды соответствующего знака. Мы получили бы тот же результат, рассуждая и по Прэстону, но только рассуждения эти в данном случае были бы несколько сложнее. Одним словом, вокруг рассматриваемого магнита появится электрическое поле, которое, в случае постоянной скорости вращения магнита и неизменности общих условий, можно считать
,,электростатическим" с таким же правом, как и поле вокруг заряженного шара. При этом, в плоскости PQ силовые линии электрического поля будут расположены так, как это показано в нижней части рис. 116. Если бы мы взяли два подобных цилиндрических магнита, параллельных друг другу и так вращающихся, чтобы на их поверхностях образовались заряды разных знаков, то между ними должно наблюдаться притяжение, причем сила эта будет той же природы, что и сила механического взаимодействия между двумя бузинными шариками, противоположно наэлектризованными. Вследствие 'большой сложности тех электромагнитных процессов, которые протекают внутри всякого заряженного тела и на его поверхности, в настоящее время затруднительно еще дать полную картину того, как зарождается „электростатическое поле" в обычных случаях, но только-что разобранный пример (рис. 116) в достаточной степени выявляет сущность нашего утверждения, что всякое электрическое поле есть лишь одно из проявлений основного электромагнитного процесса. Все, что было сказано в § 1 о роли промежуточной среды, имеет непосредственное отношение и к электрическому полю. Опыты Фарадея показали, что все электрические взаимодействия и явления необходимо понимать как результат распространения электрической деформации от одного элемента объема среды к другому соседнему. И в то же время Максвелл выяснил, что между точкой зрения Фарадея и формальными достижениями учения об электрическом поле, основанного на законе Кулона, нет никакого противоречия.
Дата добавления: 2014-11-29; Просмотров: 434; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |