Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Разбиение выпуклого N-угольника




Дан выпуклый N-угольник, заданный координатами своих вершин в порядке обхода. Он разрезается N-2 диагоналями на треугольники. Стоимость разрезания определяется суммой длин всех использованных диагоналей. Найти разрез минимальной стоимости.

Идея решения разбирается с использованием следующего рисунка.

Обозначим через S[k,l] стоимость разрезания многоугольника A[k,l] диагоналями на треугольники. При l=k+1 или k+2 S[k,l]=0, следовательно, l>k+2. Вершина с номером i, i изменяется от k+1 до l-1, определяет какое-то разрезание многоугольника A[k,l]. Cтоимость разрезания определим как:

S[k,l]=min{длина диагонали <k,i>+длина диагонали <i,l>+S[k,i]+S[i,l]}. При этом следует учитывать, что при i=k+1 диагональ <k,i> является стороной многоугольника и ее длина считается равной нулю.

Пример(N=6).

 

 

 




Поделиться с друзьями:


Дата добавления: 2014-11-28; Просмотров: 513; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.