КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Физические величины и их измерение
ИЗМЕРЕНИЯ Современный этап научно-технического прогресса характеризуется интенсивным повышением интереса к измерениям. Возрастающий интерес к измерениям обуславливается тем, что они играют всё более значительную, а иногда определяющую роль в решении, как фундаментальных проблем познания, так и практических проблем научно-технического прогресса, социальных проблем, повышают эффективность всей общественно-полезной деятельности. Измерения являются основным процессом получения объективной информации о свойствах разнообразных материальных объектов, связанных с практической деятельностью человека. Например, о годности какой-либо детали по ее размерам мы можем судить только после измерений этих размеров. Измерение – это процесс получения объективной информации, отражающей действительный, а не предполагаемый материальный, научно-технический потенциал общества, достигнутый уровень общественного производства и т.п. На информации, получаемой путём измерений, основываются решения органов управления экономическим развитием на всех уровнях. Все предприятия, деятельность которых связана с разработкой, испытаниями, производством, контролем продукции, с эксплуатацией транспорта и средств связи, со здравоохранением и др., проводят неисчислимое количество измерений. На основе результатов измерений принимаются конкретные решения. На схеме, представленной на рис. 1.1, показаны основные элементы, логически связанные между собой при измерениях.
Измерения основаны на сравнении одинаковых свойств материальных объектов. Для свойств, при количественном сравнении которых применяются физические методы, установлено единое обобщённое понятие – физическая величина. По ГОСТ 16263 физическая величина – это свойство, общее в качественном отношении многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта. Индивидуальность в количественном отношении следует понимать в том смысле, что свойство может быть для одного объекта в определённое число раз больше или меньше, чем для другого. К физическим величинам относятся: длина, масса, время, электрические величины (ток, напряжение и т.п.), давление, скорость движения и т.п.
Рис.1.1. Схема основных элементов, участвующих в измерениях
Но запах не является физической величиной, так как он устанавливается с помощью субъективных ощущений. Определение “физической величины” можно подкрепить примером. Возьмём два объекта: подшипник качения бытового пылесоса и подшипник качения вагонных колёс. Качественные свойства у них одинаковые, а количественные разные. Так диаметр наружного кольца подшипника качения вагонных колёс во много раз больше аналогичного диаметра подшипника пылесоса. Аналогично можно судить и о количественном соотношении массы и других свойств. Но для этого необходимо знать значение физической величины, т.е. оценить физическую величину в виде некоторого числа принятых для неё единиц. Например, значение массы подшипника качения вагонных колёс 8 кг, радиус земного шара 6378 км, диаметр отверстия 0,5 мм. ГОСТ 16263 приводит ещё ряд определений, связанных с понятием “физическая величина”. Истинное значение физической величины – это значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта. Оно является пределом, к которому приближается значение физической величины с повышением точности измерений. Определить экспериментально истинное значение физической величины невозможно, оно остаётся неизвестным экспериментатору. В связи с этим при необходимости (например, при проверке средств измерений) вместо истинного значения физической величины используют её действительное значение. Действительное значение физической величины – это значение физической величины, найденное экспериментальным путём и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него. При нахождении действительного значения физической величины поверка средств измерений должна осуществляться по образцовым мерам и приборам, погрешностями которых можно пренебречь. При технических измерениях значение физической величины, найденное с допустимой погрешностью, принимается за действительное значение. Основная физическая величина – это физическая величина, входящая в систему и условно принятая в качестве независимой от других величин этой системы. Например, в системе СИ основными физическими величинами, независимыми от других, являются длина l, масса m, время t и др. Производная физическая величина – физическая величина, входящая в систему и определяемая через основные величины этой системы. Например, скорость v определяется в общем случае уравнением:
v=dl/dt, (1.1)
где l – расстояние; t – время. Ещё пример. Механическая сила в этой же системе определяется уравнением:
F=m*a, (1.2)
где m – масса; a - ускорение, вызываемое действием силы F. Мерой для количественного сравнения одинаковых свойств объектов служит единица физической величины – физическая величина, которой по определению присвоено числовое значение, равное единицы. Единицам физических величин присваивается полное и сокращённое символьное обозначение – размерность. Например, масса – килограмм (кг), время – секунда (с), длина – метр (м), сила – Ньютон (Н). Приведённые выше определения физической величины и её значения позволяют определить измерение как нахождение значения физической величины опытным путём с помощью специальных технических средств (ГОСТ 16263). Это определение справедливо как для простейших случаев, когда, прикладывая линейку с делениями к детали, сравнивают её размер с единицей длины, хранимой линейкой, или когда с помощью прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, так и для более сложных – при использовании измерительной системы (для измерения нескольких величин одновременно). Для более полного раскрытия понятия “измерение” знания одной его сути недостаточно. Необходимо выявить ещё и те условия, соблюдение которых является обязательным при выполнении измерений. Эти условия можно сформулировать, исходя из метрологической практики, обобщив её требования, а также исходя из определения понятия “измеряемая физическая величина”: измерения возможны при условии, если установлена качественная определённость свойства, позволяющая отличить его от других свойств (т.е. при выделении физической величины среди других); определена единица для определения величины; имеется возможность материализации (воспроизведения или хранения) единицы; сохранение неизменённым размер единицы (в пределах установленной точности) минимум в течение срока проведения измерений. Если нарушается хотя бы одно из этих условий, измерения невыполнимы. Приведённые условия могут служить основой, во-первых, при рассмотрении содержания понятия “измерение”, во-вторых, при проведении чёткой границы между измерением и другими видами количественных оценок. От термина “измерение” происходит термин “измерять”, который широко используется на практике. Однако нередко применяются неверные термины: “мерить”, ”обмерять”, ”замерять”, ”промерять”, не вписывающиеся в систему метрологических терминов. В технической литературе, посвящённой измерениям или средствам измерений, иногда можно прочесть об измерении процессов или зависимостей. Процесс, как объект измерить нельзя. Измеряют физические величины, их характеризующие. Например, нельзя сказать: “измерить деталь”. Следует уточнить, какие именно физические величины, свойственные детали, подлежат измерению (длина, диаметр, масса, твёрдость и др.). Это же относится и к процессам, включая быстродействующие, а также к зависимостям между физическими величинами. Так, при нахождении зависимости уменьшения длины тела от изменения температуры измеряемыми величинами будут приращение температуры и удлинение тела, по значениям которых вычисляется указанная зависимость. Эти вычисления можно осуществлять при помощи ЭВМ, сопряжённых со средством измерений, однако это не означает, что измеряется зависимость (она вычисляется). При использовании так называемых средств статистических измерений (в быстропротекающих процессах) допускаются такие, например, выражения, как: “измерение среднеквадратического значения напряжения случайного процесса”, “измерение плотности распределения вероятности” и др. Следует отметить, что не все физические величины могут быть воспроизведены с заданными размерами и непосредственно сравнимы с себе подобными. К таким величинам относятся, например, температура, твёрдость материалов и т.п. В этом случае находит применение метод натуральных (реперных) шкал, заключающийся в следующем. Предметы и явления, обладающие некоторыми однородными свойствами, располагают в натуральный последовательный ряд так, что у каждого предмета в этом ряду данного свойства будет больше, чем у предыдущего и меньше, чем у последующего. Далее выбирают несколько членов ряда и принимают их за образцы. Выбранные образцы формируют шкалу (лестницу) реперных точек для сопоставления предметов или явлений поданному свойству. Примерами реперных шкал являются минералогическая шкала твёрдости, шкала силы ветра в “баллах Бофорта”. Существенный недостаток таких шкал состоит в произвольном размере интервалов между реперными точками и невозможность уточнения размера физической величины внутри интервала. В связи с этим в измерительной технике отдаётся предпочтение функциональным шкалам, при построении которых используется функциональная зависимость какой-либо физической величины, удобной для непосредственного измерения, от измеряемой физической величины. Чаще всего эта зависимость имеет линейный характер. В качестве примера можно привести температурную шкалу, например, Цельсия. При построении шкалы используются реперные точки, которым приписаны определённые значения температур, например, точка таяния льда (0,000о С), точка кипения воды (100,000о С) и т.п. В интервалах между температурами реперных точек осуществляется интерполяция с помощью тех или иных преобразователей температуры – ртутных термометров, термопар, платиновых термометров сопротивления. При этом измеряемая температура преобразуется в перемещение конца ртутного столбика, в эдс термопары или в сопротивление платинового резистора. Специалист в области метрологии М.Ф. Маликов для решения метрологических проблем предложил разделить все измерения на две группы, назвав их “лабораторные” и “технические”. К лабораторным относятся такие измерения, погрешности получаемых результатов которых оцениваются в процессе самих измерений, причём каждому результату соответствует своя оценка погрешности. К техническим М.Ф. Маликов отнёс такие измерения, возможные погрешности результатов которых заранее изучены и определены, так что в процессе самих измерений они уже не оцениваются. Лабораторные – это измерения, проводимые, как правило, при фундаментальных исследованиях. Характерным для них является стремление обеспечить более высокую точность результатов измерений. Отсюда вытекают специфические особенности лабораторных измерений: желательно из используемых средств измерений извлечь всю точность, на которую они способны; желательно исключить (или уменьшить) случайные погрешности каждого результата измерений, для чего проводят многократные измерения, результаты которых по выбранной методике математически обрабатывают; желательно исключить (или уменьшить) систематические погрешности каждого результата измерений, для чего используют специальные способы измерений. В связи с этим, основным признаком лабораторных измерений является оценивание погрешности каждого отдельного результата измерений в процессе самих измерений. Технические измерения – это основная масса измерений, проводимых в народном хозяйстве. Отличительным признаком технических измерения является то, что они проводятся по специально разработанным, предварительно изученным и аттестованным методикам выполнения измерений. В дальнейшем будем касаться только технических измерений и под термином “измерения” будем понимать “технические измерения”.
Дата добавления: 2014-11-29; Просмотров: 2091; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |