Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Средства измерений. Классификация видов и методов измерений




Классификация видов и методов измерений

Большое разнообразие измеряемых величин, условий проведения измерений, способов получения результата приводит к чрезвычайно большому разнообразию измерений. В тоже время многие конкретные измерения, несмотря на их внешнее различие, имеют много общего и часто выполняются по одинаковой схеме. Отсюда возникает необходимость и возможность их систематизации, выявления общих закономерностей, что позволяет значительно облегчить изучение всего многообразия измерений.

Измерения классифицируют:

по общим приёмам получения результатов измерений – прямые, косвенные, совместные, совокупные;

по выражению результата измерений – абсолютные, относительные;

по характеристики точности – равноточные, неравноточные;

по числу измерений в серии – однократные, многократные;

по отношению к изменению измеряемой величины – статические, динамические;

по метрологическому назначению – технические, метрологические.

Блок-схема классификации измерений представлена на рис. 1.2.

Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Например, измерение температуры воздуха термометром, силы тока – амперметром, диаметра вала – микрометром и т.п.

Косвенное измерение – это измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При этом числовое значение искомой величины определяется по формуле:

 

z=f(a1, a2,…, am), (1.3)

 

где: z - значение искомой величины; a1, a2,…, am – значение непосредственно измеряемых величин.

 

 

Рис. 1.2. Блок-схема классификации измерений

 

Приведем несколько примеров косвенных измерений.

1. Определение значения активного сопротивления R резистора (рис. 1.3, а) на основе прямых измерений силы тока I, проходящегочерез резистор, и падения напряжения U на нём по формуле:

R=U/I. (1.4)

 

2. Определение плотности p тела цилиндрической формы (рис. 1.3, б) на основании прямых измерений его массы m, диаметра d и высоты h цилиндра по формуле:

p=4m / (p∙d2∙h). (1.5)

 

3. Определение длины окружности L на основании прямого измерения диаметра d по формуле:

L=p∙d. (1.6)

 

в
б
а

 

Рис. 1.3. Примеры косвенных измерений

 

Косвенные измерения сложнее прямых, однако, они широко применяются на практике в случаях, когда прямые измерения практически невыполнимы, или когда косвенное измерение позволяет получить более точный результат по сравнению с прямым измерением.

В некоторых приборах вычисления функций, упомянутых в определении косвенных измерений, могут осуществляться как одна из операций преобразований “внутри” прибора. Измерения, проводимые с применением подобных измерительных приборов, относятся к прямым. К косвенным относятся только такие измерения, при которых расчёт осуществляется вручную или автоматически, но после получения результатов прямых измерений.

Во многих случаях вместо термина “косвенное измерение” применяют термин “метод косвенных измерений”. Это закреплено международными словарями в области метрологии и стандартами ряда стран и обусловлено тем, что измерение рассматривается как акт сравнения величины с единицей. Следовательно, косвенное измерение, строго говоря, - это не измерение, а метод измерений.

К совокупным измерениям относятся производимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин. К совокупным относятся, например, измерения, при которых массы отдельных гирь набора находят при известной массе одной из них и по результатам прямых измерений (сравнений) масс различных сочетаний гирь.

Совместные измерения – это производимые одновременно измерения двух или нескольких не одноименных величин для нахождения зависимости между ними.

Например, на основании одновременных измерений приращений ∆l длины детали в зависимости от изменений ∆ t его температуры (не одноименных величин) определяют коэффициент К линейного расширения материала образца:

К=∆l/(l*∆t). (1.7)

 

Числовые значения искомых величин при совместных измерениях, как и при совокупных, могут определяться из системы уравнений, связывающих значения искомых величин со значениями величин, измеренных прямым (или косвенным) способом.

Чтобы получить числовые значения искомых величин, необходимо получить по крайней мере столько уравнений, сколько имеется этих величин.

В качестве примера рассмотрим задачу экспериментального определения зависимости сопротивления резистора от температуры. Предположим, что эта зависимость имеет вид:

Rt=Ro*(1+a*t+b*t2), (1.8)

 

где: Ro и Rt – значения сопротивлений резистора при нулевой температуре и температуре t соответственно; a и b - постоянные температурные коэффициенты.

Требуется определить значения величин Ro, a и b.

Очевидно, ни прямыми, ни косвенными измерениями здесь задачу не решить. Поступим следующим образом. При различных (известных) значениях температуры t1, t2 и t3 (она может быть измерена прямо или косвенно) измеряем (прямо или косвенно) значения Rt1, Rt2 и Rt3 и записываем систему уравнений:

Rt1=R0*(1+a*t1+b*t12);

Rt2=R0*(1+a*t2+b*t22); (1.9)

Rt3=R0*(1+a*t3+b*t32).

 

Решая эту систему относительно R0, a и b, получаем значения искомых величин.

Абсолютное измерение – измерение, приводящее к значению измеряемой величины, выраженному в её единицах. Например, при измерении силы электрического тока амперметром или длины детали микрометром результат измерения выражается в единицах измеряемых величин (в амперах и миллиметрах).

В ГОСТ 16263 приведено другое определение: “абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких величин и использовании значений физических констант”. В таком понимании это понятие практически не применяется. Оно соответствует понятию «фундаментальное измерение», приведённому в международном словаре. Термин «абсолютное измерение» следует избегать, т. к. абсолютное, т. е. полностью безошибочное, измерение невозможно. Вместо него можно использовать термин «непосредственное измерение».

Относительное измерение – измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение величины по отношению к одноимённой величине, принимаемой за исходную. Относительное измерение основано на сравнение измеряемой величины с известным значением меры. Исходную величину при этом находят алгебраическим суммированием размера меры и показаний прибора. Например, контроль калибра пробки на вертикальном оптиметре.

Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях. Например, измерение диаметра вала гладким микрометром и индикаторной скобой.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различными по точности средствами измерений и (или) в разных условиях.

Однократное измерение – измерение, выполненное один раз. Например, измерение конкретного момента времени по часам. В ряде случаев, когда нужна большая уверенность в получаемом результате, одного измерения оказывается недостаточно. Тогда выполняется два, три и более измерений одной и той же конкретной величины. В таких случаях допускается выражение: “двукратное измерение”, “трёхкратное измерение” и т.д.

Многократное измерение – измерение одной и той же физической величины, когда результат получают из нескольких следующих друг за другом измерений, т.е. измерение, состоящее из ряда однократных измерений.

С какого числа измерений можно считать измерение многократным? Строгого ответа на этот вопрос нет. Однако известно, что при числе отдельных измерений n>4, ряд измерений может быть обработан в соответствии с требованиями математической статистики. Следовательно, при четырёх измерениях и более измерение можно считать многократным. За результат многократного измерения обычно принимают среднеарифметическое значение из результатов однократных измерений, входящих в ряд.

Статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Например, измерение длины детали при нормальной температуре, измерение размеров земельного участка.

Динамические измерения – измерения физической величины, размер которой изменяется с течением времени. Быстрое изменение размеров измеряемой величины требует её измерения с точной фиксацией момента времени. Например, измерение расстояния до уровня земли со снижающегося самолёта.

Технические измерения – измерения при помощи рабочих средств измерений. Технические измерения выполняются с целью контроля и управления научными экспериментами, контроля параметров изделий, технологических процессов, управления движением различных видов транспорта, диагностики заболеваний, контроля загрязнённости окружающей среды и т.п. Например, измерение давления пара в котле при помощи манометра, измерение ряда физических величин, характеризующих технологический процесс.

Метрологические измерения – измерения при помощи эталонов и образцовых средств измерений с целью воспроизведения единиц физических величин при передачи их размера рабочим средствам измерений. Например, при поверке образцовых мер магнитной индукции 3-го разряда на поверочной установке осуществляются измерения образцовым тесламетром 2-го разряда размера величины, воспроизведённой мерой. Эти измерения производятся с метрологической целью, т.е. являются метрологическими.

Любые измерения представляют собой физический эксперимент, выполнение которого основано на использовании тех или иных физических явлений. Совокупность физических явлений, на которых основаны измерения, называются принципом измерения.

Совокупность приёмов использования принципов и средств измерения составляет метод измерения.

Выбор того или иного метода измерений зависит от измерительной задачи, которую следует решать (точность результата измерений, быстрота его получения и др.). При решении любой измерительной задачи важно иметь такие средства измерений, в которых реализованы выбранные принципы измерений. Например, температуру можно измерить платиновым термометром сопротивления (реализованный принцип измерения – зависимость сопротивления платины от температуры) и термоэлектрическим термометром (реализованный принцип – зависимость термо э.д.с. от разности температур). Безусловно, при разработке того или иного метода измерений принцип измерений влияет на выбор средств измерений. Но это не означает, что принцип измерения следует считать одним из компонентов при определении метода измерений. Таким образом, можно сказать, что метод измерения – это способ решения измерительной задачи, характеризуемый его теоретическим обоснованием и разработкой основных приёмов применения средств измерения.

Различные методы измерений отличаются, прежде всего, организацией сравнения измеряемой величины с единицей измерения. С этой точки зрения все методы измерений в соответствии с ГОСТ 16263 подразделяются на две группы (рис. 1.4): методы непосредственной оценки и методы сравнения.

 

 

Рис. 1.4. Схема классификации методов измерений

 

Методы сравнения в свою очередь включают в себя метод противопоставления, дифференцированный метод, метод замещения, нулевой метод и метод совпадения.

При методе непосредственной оценки значение измеряемой величины определяют непосредственно по отсчётному устройству измерительного прибора прямого действия (измерительный прибор, в котором предусмотрено одно или несколько преобразований сигнала измерительной информации в одном направлении, т.е. без обратной связи). На этом методе основаны все показывающие (стрелочные) приборы (вольтметры, амперметры, индикаторы, манометры, термометры, тахометры и т.п.). Следует отметить, что при использовании данного метода измерений мера как вещественное воспроизведение единицы измерения, как правило, непосредственно в процессе измерения не участвует. Сравнение измеряемой величины с единицей измерения осуществляется косвенно путём предварительной градуировки измерительного прибора с помощью образцовых мер или образцовых измерительных приборов.

Точность измерений по методу непосредственной оценки в большинстве случаев невелика и ограничивается точностью применяемых измерительных приборов.

Метод сравнения с мерой – это такой метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Примеры этого метода: измерение массы на рычажных весах с уравновешиванием гирями; измерение напряжения постоянного тока на компенсаторе сравнением с э.д.с. нормального элемента; измерение диаметра вала индикатором при настройке его на ноль по концевым мерам длины.

ГОСТ 16263 предусматривает пять методов измерений, основанных на сравнении с мерой.

Метод противопоставления – это метод сравнения с мерой, в котором измеряемая величина и величина воспроизводимая с мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами. Например, измерение массы на равноплечих весах с помощью измеряемой массы и уравновешивающих её гирь на двух чашках весов (рис. 1.5, а).

Дифференциальный метод – это метод сравнения с мерой, в котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. Например, измерения, выполняемые при поверке мер длины сравнением с образцовой мерой на компараторе, или измерения деталей при настройке индикатора по концевым мерам длины (рис. 1.5, б).

 

б
а

 

Рис. 1.5. Примеры измерений методом противопоставления

и дифференцированным методом

Широко распространён на практике нулевой метод измерений – это метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Например, измерения электрического сопротивления мостом с полным его уравновешиванием. Нулевой метод позволяет получить высокую точность измерения.

Методом замещения называется метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой. Это, например, взвешивание поочерёдным помещением массы и гирь на одну и ту же чашку весов. Метод замещения можно рассматривать как разновидность дифференциального и нулевого метода, отличающиеся тем, что сравнение измеряемой величины с мерой производится разновремённо.

Метод совпадений – это метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой измеряют, используя совпадения отметок шкал или периодических сигналов. Примерами этого метода являются измерения длин с помощью штангенциркуля, или измерение частоты вращения стробоскопом, где наблюдают совпадения положения какой-либо метки на вращающемся объекте в момент вспышек известной частоты.

Все методы измерений могут осуществляться контактным способом, при котором измерительные поверхности прибора взаимодействуют с проверяемым изделием, или бесконтактным способом, при котором взаимодействия нет. Например, измерение диаметра вала штангенциркулем осуществляется контактным способом, а измерение параметров резьбы на инструментальном микроскопе – бесконтактным способом.

При контактном способе измерений необходимо правильно выбирать форму измерительного наконечника в зависимости от формы измеряемой поверхности. Рекомендации по выбору формы измерительного наконечника приведены в табл. 1.1.

 

Таблица 1.1

 

Рекомендации по выбору формы измерительного наконечника

 

Форма поверхностей детали при контактном способе измерений Форма поверхности измерительного наконечника
Плоскость Сфера
Цилиндр Линия (цилиндр)
Сфера Плоскость

 

Описанные выше различия в методах сравнения измеряемой величины с мерой находят свое отражение и в принципах построения измерительных приборов.

С этой точки зрения различают измерительные приборы прямого действия и приборы сравнения. В измерительном приборе прямого действия предусмотрено одно или несколько преобразований сигнала измерительной информации в одном направлении, т.е. без обратной связи. Так, например, на рис. 1.6. приведена структурная схема электронного вольтметра переменного и постоянного тока, которая содержит выпрямитель В, усилитель постоянного тока УПТ и измерительный механизм ИМ. В этом приборе преобразование сигнала измерительной информации идёт только в одном направлении.

Характерной особенностью приборов прямого действия является потребление энергии от объекта измерения. Однако это не исключает возможности применения приборов прямого действия для измерения, например, электрического сопротивления или ёмкости, но для этого необходимо использовать вспомогательный источник энергии.

Измерительный прибор сравнения предназначен для непосредственного сравнения измеряемой величины с величиной, значение которой известно.

 

 

Рис. 1.6. Структурная схема электронного вольтметра

 

На рис. 1.7. приведена структурная схема автоматического прибора сравнения, содержащая устройство сравнения УС, устройство управления УУ и изменяемую (регулируемую) меру М с отсчётным устройством.

 

 

Рис. 1.7. Структурная схема автоматического прибора сравнения

 

Измеряемая величина Х и однородная с ним величина Х0 попадают на входы устройства сравнения УС. Величина Х0 получается от регулируемой меры М. В зависимости от результата сравнения Х и Х0 устройство управления УУ воздействует на меру М таким образом, чтобы величина /Х-Х0/ уменьшалась. Процесс управления заканчивается, когда Х=Х0. При этом значение измеряемой величины отсчитывается по шкале регулируемой меры. Если в устройстве сравнения происходит вычитание величин Х из Х0, то в данном приборе реализуется сравнение измеряемой величины с мерой нулевым методом.

Следует отметить, что сравнение измеряемой величины с мерой в приборах сравнения может осуществляться либо одновременно (нулевой метод), либо разновременно (метод замещения).

Таким образом, приведённая классификация видов и методов измерений позволяет не только систематизировать разнообразные измерения всевозможных физических величин и тем самым облегчить подход к решению конкретной измерительной задачи, но и с общих позиций подойти к рассмотрению структур и принципов действия различных измерительных приборов.

 

Понятие и термин “средство измерений” получили широкое распространение в метрологической практике с начала 70-х годов. К этому времени стала ясной необходимость, особенно для технических измерений, разработки единой метрологической методологии, охватывающей все области измерений и измеряемые величины. В связи с этим было признано удобным ввести некоторый термин, который охватывал бы любое техническое устройство, предназначенное для выработки, переработки, преобразования, отображения информации о размерах измеряемых величин.

По ГОСТ 16263 средство измерений – это техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства. Это определение соответствует ИСО и МЭК, согласно которым средство измерений – это устройство, предназначенное для выполнения измерений “само по себе” или с применением другого оборудования.

Классификация видов средств измерений приведена на рис. 1.8.

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера. Например, гиря – мера массы; измерительный резистор – мера электрического сопротивления; температурная лампа – мера яркости или цветовой температуры; кварцевый генератор – мера частоты электрических колебаний. Различают однозначные меры, многозначные меры и наборы мер.

 

 

Рис. 1.8. Классификация видов средств измерений

Однозначная мера – это мера, воспроизводящая физическую величину одного размера. Например, гиря, плоскопараллельная концевая мера длины, измерительный резистор, конденсатор постоянной ёмкости и т.п.

Многозначная мера – мера, воспроизводящая ряд одноимённых величин различного размера. Например, штриховая мера длины, конденсатор переменной ёмкости и т.п.

Набор мер – специально подобранный комплект мер, применяемых не только по отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноимённых величин различного размера. Например, набор гирь, набор плоскопараллельных концевых мер длины, набор угловых мер, набор измерительных конденсаторов и т.п.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Как правило, измерительный прибор имеет устройства для преобразования измеряемой величины в сигнал измерительной информации и его индикации в форме, наиболее доступной для восприятия. Устройства для индикации часто содержат шкалу со стрелкой или другим указателем, диаграмму с пером или цифровой указатель, благодаря чему можно отсчитывать показания или регистрировать значения физической величины. В случае сопряжения прибора с ЭВМ отсчёт производят при помощи монитора.

Различают следующие типы измерительных приборов.

Аналоговый измерительный прибор – это прибор, показания которого являются непрерывной функцией изменений измеряемой величины. Эти приборы имеют ряд преимуществ: относительную простоту, низкую стоимость, высокую информативность аналогового сигнала. Вместе с тем к недостаткам аналоговых измерительных приборов следует отнести наличие у большинства из них инерционных подвижных частей, снижающих их быстродействие и помехоустойчивость.

Структурная схема аналогового измерительного прибора прямого действия представлена на рис. 1.9.

 

 

Рис. 1.9. Структурная схема аналогового измерительного прибора

прямого действия

 

В данных приборах преобразование измерительной информации осуществляется только в одном направлении от входа к выходу. Измеряемая величина Х с помощью измерительного преобразователя ИП преобразуется в напряжение или ток, который воздействует на электромеханический измерительный механизм ИМ, вызывая перемещение его подвижной части и связанного с ней указателя отсчётного устройства ОУ. Отсчётное устройство содержит оцифрованную шкалу, с помощью которой оператор ОП получает количественный результат измерения. Градуировка шкалы прибора производится путём подачи на вход ряда известных значений измеряемой величины, реализуемых образцовой многозначной мерой М. Таким образом, сравнение измеряемой величины с единицей измерения в данном случае осуществляется косвенно, а мера М в процессе измерения непосредственного участия не принимает.

Цифровой измерительный прибор – это измерительный прибор, автоматически вырабатывающий дискретные сигналы измерительной информации, показания которого представлены в цифровой форме. Например, кругломер, профилограф–профилометр и т.п.

В отличие от аналоговых приборов в цифровых измерительных приборах обязательно автоматически выполняются следующие операции: квантование измеряемой величины по уровню; дискретизация её по времени; кодирование информации.

Представление измерительной информации в виде кода обеспечивает удобство её регистрации и обработки, возможность длительного хранения в запоминающих устройствах, передачу на значительные расстояния без искажений практически по любым каналам связи, непосредственный ввод в ЭВМ для обработки, а также исключает вносимые оператором при отсчёте субъективные погрешности.

Преимуществами цифровых измерительных приборов перед аналоговыми являются:

удобство и объективность отсчёта;

высокая точность результатов измерения;

широкий динамический диапазон при высокой разрешающей способности;

высокое быстродействие за счёт отсутствия подвижных электромеханических элементов;

возможность автоматизации процесса измерения;

высокая устойчивость к внешним механическим и климатическим воздействиям.

К недостаткам цифровых измерительных приборов следует отнести их схемную сложность и относительно высокую стоимость.

В настоящее время элементной базой цифровых измерительных приборов являются микросхемы, что позволяет достигнуть высокого быстродействия и малых габаритных размеров приборов.

Обобщённая структурная схема цифрового измерительного прибора приведена на рис. 1.10.

Она содержит входной аналоговый преобразователь АП, аналого-цифровой преобразователь АЦП, образцовую меру М, цифровое средство отображения информации ЦСОИ и устройство управления УУ. Аналоговый преобразователь преобразует измеряемую величину x(t) в функционально с ней связанную аналоговую величину y(t), более удобную для преобразования в цифровой код. В качестве АП используют усилители, делители, фильтры и т.п.

Аналого-цифровой преобразователь выполняет операции квантования по уровню и по времени аналоговой величины, сравнивая её с мерой, и кодирование результатов. При этом на выходе вырабатывается дискретный сигнал ДС, который преобразуется цифровым средством отображения информации ЦСОИ в цифровой отсчёт N или в виде кода вводится в ЭВМ.

Показывающий измерительный прибор – это измерительный прибор, допускающий только отсчитывание показаний. К ним можно отнести микрометр, цифровой вольтметр и т.п.

Регистрирующий измерительный прибор – это измерительный прибор, в котором предусмотрена регистрация показаний. В свою очередь, регистрирующие измерительные приборы делятся на самопишущие, в которых предусмотрена запись показаний в форме диаграмм (самопишущий вольтметр, барограф, термограф, профилограф и т.п..), и на печатающие, в которых предусмотрено печатание показаний в цифровой форме.

 

 

Рис. 1.10. Обобщённая структурная схема цифрового измерительного

прибора

Измерительный прибор прямого действия – измерительный прибор, в котором предусмотрено одно или несколько преобразований сигнала измерительной информации в одном направлении, т.е. без применения обратной связи. Например, амперметр, манометр, ртутный стеклянный термометр.

Измерительный прибор сравнения предназначен для непосредственного сравнения измеряемой величины с величиной, значение которой известно. Например, равноплечие весы, электроизмерительный потенциометр, компаратор для линейных мер и др.

Интегрирующий измерительный прибор – это прибор, в котором подводимая величина подвергается интегрированию по времени или по другой независимой переменной. Например, электрический счётчик, профилограф-профилометр и т.п.

Измерительный преобразователь – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем.

Обычно измерительные преобразователи входят в состав измерительных приборов, установочных систем и др. в качестве важнейшего устройства, от которого зависят точностные характеристики.

По характеру преобразования выделяют аналоговые, аналого-цифровые и цифро-аналоговые преобразователи. По месту в измерительной цепи – первичные и промежуточные преобразователи. Кроме того, есть масштабные преобразователи. Например, измерительный трансформатор тока является масштабным преобразователем, термопара в термоэлектрическом термометре – аналоговым преобразователем, преобразователь цифрового вольтметра – аналого-цифровым измерительным преобразователем.

Вспомогательное средство измерений – это средство измерений величин, влияющих на метрологические свойства другого средства измерений при его применении или поверке. Например, термометр для измерения температуры газа в процессе измерений объёмного расхода этого газа.

Измерительная установка – это совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем и расположенная в одном месте. Например, установка для измерений удельного сопротивления электротехнических материалов, установка для испытаний магнитных материалов и т.п..

Измерительную установку с включенными в неё образцовыми средствами измерений называют поверочной установкой, измерительную установку, входящую в состав эталона – эталонной, установку, предназначенную для испытаний каких-либо изделий, иногда называют испытательным стендом. Некоторые виды измерительных установок получили название измерительных машин. Например, координатно-измерительная машина для измерения параметров сложных изделий в двухмерном или трёхмерном пространствах.

Измерительная система – совокупность средств измерения (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, соединённых между собой каналами связи, предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления. Например, измерительная система теплоэлектростанции позволяет получать измерительную информацию о ряде физических величин в разных энергоблоках. Или с помощью радионавигационной системы, состоящей из ряда функционально объединенных измерительных комплексов, разнесённых в пространстве на значительное расстояние, определяют местоположение судов.

В зависимости от назначения измерительные системы разделяют на измерительные информационные, измерительные контролирующие, измерительные управляющие и др.

Измерительную систему, снабжённую средствами автоматического получения и обработки измерительной информации, называют автоматической измерительной системой. В автоматизированных производствах измерительные контролирующие системы работают автоматически, и их обычно именуют системами автоматического контроля.

В зависимости от числа измерительных каналов различают одно-, двух-, трёхканальные и т.д. измерительные системы.

И змерительно-вычислительный комплекс – функционально объединённая совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенных для выполнения в составе конкретной измерительной задачи.

По назначению приборы делятся на универсальные, предназначенные для измерения одинаковых физических величин различных объектов, и специализированные, используемые для измерения параметров однотипных изделий (например, размеров резьбы или зубчатых колёс) или одного параметра различных изделий (например, шероховатости или твёрдости).

По принципу действия, который положен в основу измерительной системы, приборы подразделяют на механические, оптические, оптико-механические, пневматические, электрические, рентгеновские, лазерные и др.

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 8246; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.102 сек.