Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Репрезентативность при изучении качественных признаков




Качественные признаки обычно не могут иметь градаций проявления: они или имеются, или не имеются у каждой из особей, например пол, комолость, наличие или отсутствие каких-нибудь особенностей, уродств, выдающихся качеств, хромосомных перестроек, точечных мутаций, заболеваний, исходов болезней и т. д.

Принципиальной разницы между количественными и качественными признаками нет. Степень проявлений большинства качественных признаков при более тщательном исследовании может быть измерена, и тогда качественный признак становится количественным. И, наоборот, любой количественный признак может быть выражен в альтернативной форме (например, больше средней и меньше средней) и тогда он для исследователя превратится в качественный признак.

При изучении групповых свойств по качественным признакам характеристика группы заключается в указании числа плюсовых и минусовых объектов, т. е. объектов, имеющих и не имеющих признак.

Основные сводные показатели: средняя величина и стандартное отклонение качественных признаков имеют, конечно, свои специфические особенности и по технике их расчета и по способам использования в биологических работах.

Средняя величина качественного признака в группе – это доля плюсовых объектов, определяемая по формуле:

; (10.21)

где р – выборочная доля плюсовых объектов (имеющих изучаемый качественный признак);

а – количество плюсовых объектов в группе;

n – объем группы.

Если группа состоит из 200 особей, из которых 120 самок, то доля самок в группе:

.

Если долю умножить на 100, то получится характеристика, выраженная в процентах.

В генеральной совокупности доля плюсовых объектов выражается такой формулой:

, (10.22)

где Р – доля плюсовых объектов в генеральной совокупности;

А – количество плюсовых объектов;

N – объем генеральной совокупности.

Сумма квадратов центральных отклонений или дисперсия качественных признаков определяется по формулам:

В выборках – C = npq; (10.23)

В генеральных совокупностях – ; (10.24)

где q = 1 – p; Q = 1 – P – доля минусовых объектов в выборке и в генеральной совокупности.

При n = 200, а = 120, p = 0,6, q = 0,4

С = 200 × 0,6 × 0,4 = 48.

Стандартное отклонение качественных признаков определяется по формулам:

; (10.25)

. (10.26)

Стандартное отклонение качественных признаков имеет принципиальное отличие от сигмы количественных признаков. Произведение pq = p (1 – р) не может быть больше одной четверти:

max [pq] = 0,25 (10.27)

Эта максимальная величина произведения доли на свое дополнение до единицы получается при р = 0,5 и равна 0,5 × 0,5 = 0,25. Всякое другое произведение дает уже меньшую величину, например при р = 0,4; рq = 0,4×0,6 = 0,24.

Поэтому и стандартное отклонение качественных признаков не может быть больше определенного предела: в выборках:

. (10.28)

В генеральных совокупностях:

(10.29)

Наличие верхнего предела сигмы значительно упрощает планирование достаточной численности выборки при изучении качественных признаков.

Ошибка репрезентативности доли аналогична ошибке средней и определяется по формуле:

, (10.30)

Например: при n = 200, а = 120, p = 0,6, q = 0,4

.

Максимально возможное значение ошибки:

.

Если в выборке получены крайние значения доли (или 0 или 1, т. е. когда в выборке нет ни одного плюсового объекта или, наоборот, вся выборка состоит из одних плюсовых объектов), то ошибка таких долей определяется по формуле:

, (10.31)

Если в выборке из 9 объектов не оказалось ни одного плюсового, то р = 0, а sр = 1/10 = 0,1.

В некоторых биологических исследованиях генеральные доли известны или предполагаются известными и все же требуется определить ошибку выборочной доли для выборок разного объема. В таких случаях ошибка доли определяется по точной формуле:

, (10.32)

где в числителе подкоренного выражения стоит произведение генеральной доли на ее дополнение до единицы, а в знаменателе – полный объем выборки (а не число степеней свободы).

Оценка генеральной доли, или определение ее доверительных границ, производится так же, как и оценка генеральной средней:

Р = р ± D; D = t × sp (10.33)

где Р, р – генеральная и выборочная доли;

D = tst × sp – возможная максимальная погрешность при прогнозе генерального параметра;

tst – критерий надежности для трех порогов вероятности безошибочных прогнозов (b1 =0,95, b2 =0,99, b3 =0,999) устанавливается так же как и при оценке генеральной средней; или по таблице стандартных значений критерия Стьюдента или по приближенным формулам;

sр – ошибка репрезентативности выборочной доли (показатель точности).

Пример

При исследовании 200 особей одного вида у 60 из них сказалась повышенная способность выдерживать сильное понижение температуры среды обитания. Как часто такие особи могут встретиться среди всей популяции?

Для решения этого вопроса достаточно определить доверительные границы генеральной доли; при сходных данных
n = 200, a = 60, ; ;
b1 = 0,95; n = 199; tst = 2,0; D = tst × sp =2,0 × 0,033=0,066;

p = 0,3 ± 0,066 [не более 0.3 + 0,066 = 0,366 ~ 37%; не менее
0.3 – 0,066 = 0,234 ~ 24%.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 500; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.