Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры решения задач. Задача 1. Зависимость пройденного телом пути от времени выражается уравнением (




Задача 1. Зависимость пройденного телом пути от времени выражается уравнением ( = 2 м/с, = 3 м/с2, = 5 м/с3). Запишите выражения для скорости и ускорения. Определите для момента времени после начала движения пройденный путь, скорость и ускорение.

Дано: ; ; ; ; . Решение: Для определения зависимости скорости движения тела от времени определяем первую производную от пути по времени: , или после подстановки Для определения зависимости ускорения движения тела от времени определяем первую производную от скорости по времени: , или послеподстановки . Пройденный путь определяется как разность .

Ответ:

Задача 2. Тело брошено со скоростью под углом к горизонту. Принимая тело за материальную точку, определите нормальное и тангенциальное ускорение тела через 1,2 с после начала движения.

Дано: ; ; ; . Решение Построим чертеж и определим проекции скорости в начальный момент времени: , .
a

Рис.1.1

Проекция в процессе движения точки остается постоянной по величине и направлению.

Проекция на ось изменяется. В точке С (рис 1.1) скорость направлена горизонтально, т.е. . Это означает, что , где - время, в течение которого материальная точка поднимается до максимальной высоты, или после подстановки .

К моменту времени 1,2 с тело будет находиться на спуске. Полное ускорение в процессе движения направлено вертикально вниз и равно ускорению свободного падения . Нормальное ускорение равно проекции ускорения свободного падения на направление радиуса кривизны, а тангенциальное ускорение - проекции ускорения свободного падения на направление скорости движения (см. рис.1.1).

 

Из треугольников скоростей и ускорений имеем:

, ,

откуда , ,

где - скорость в момент времени

После подстановки получаем:

.

.

Ответ: , .

Задача 3. Колесо автомобиля вращается равнозамедленно. За время 2 мин оно изменило частоту вращения от 240 до 60 мин-1. Определите: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время.

 

Дано: Решение: Запишем формулы для угла поворота и угловой скорости при равнозамедленном вращении: (1)
(2)

где - угловые скорости в начальный и конечный моменты времени соответственно.

Из уравнения (2) получаем:

.

Угол поворота . Поэтому выражение (1) можно записать так: .

Отсюда: .

Ответ: ; .

Задача 4. Точка движется по окружности радиусом так, что зависимость угла поворота радиуса от времени дается уравнением , где , . Определите к концу второй секунды вращения: а) угловую скорость; б) линейную скорость; в) угловое ускорение; г) нормальное ускорение; д) тангенциальное ускорение.

Дано: ; . Решение: Зависимость угловой скорости от времени определяем, взяв первую производную от угла поворота по времени, т.е. . Для момента времени , . Линейная скорость точки , или после подстановки .  
Зависимость углового ускорения точки от времени определится первой производной от угловой скорости по времени, т.е. . Для момента времени . Нормальное и тангенциальное ускорения определяются по формулам соответственно:
и . Ответ: ; ; ; ; .

Контрольные задания

1.1. Тело падает вертикально с высоты 19,6 м с нулевой начальной скоростью. Какой путь пройдет тело: 1) за первую 0,1 с своего движения, 2) за последнюю 0,1 с своего движения? Считать . Сопротивлением воздуха пренебречь.

1.2. Тело падает вертикально с высоты 19,6 м с нулевой начальной скоростью. За какое время тело пройдет: 1) первый 1 м своего пути, 2) последний 1 м своего пути? Считать . Сопротивлением воздуха пренебречь.

1.3. С башни в горизонтальном направлении брошено тело с начальной скоростью 10 м/с. Пре­небрегая сопротивлением воздуха, определите для мо­мента времени = 2 с после начала движения: 1) ско­рость тела; 2) радиус кривизны траектории. Считать .

1.4. Камень брошен горизонтально со скоростью 5м/с. Определите нормальное и тангенциальное ускорения камня через 1 с после начала движения. Считать . Сопротивлением воздуха пренебречь.

1.5. Материальная точка начинает двигаться по ок­ружности радиусом = 2,5 см с постоянным тангенциальным ускорением = 0,5 см/с2. Определите: 1) момент времени, при котором вектор ускорения образует с вектором скорости угол 45°; 2) путь, пройденный за это время движущейся точкой.

1.6. Зависимость пройденного телом пути от времени задаётся уравнением , где =0,1м, =0,1м/с, =0,14м/с2, =0,01м/с3. 1) Через сколько времени после начала движения ускорение тела будет равно 1м/с2? 2) Чему равно среднее ускорение тела за этот промежуток времени?

1.7. Зависимость пройденного телом пути от времени задаётся уравнением , где =5м, =4м/с, =1м/с2. Запишите выражения для скорости и ускорения. Определите для момента времени после начала движения пройденный путь, скорость и ускорение.

1.8. Зависимость пройденного телом пути от времени выражается уравнением ( = 2 м/с, = 3 м/с2, = 4 м/с3). Запишите выражения для скорости и ускорения. Определите для момента времени после начала движения пройденный путь, скорость и ускорение.

1.9. Нормальное ускорение точки, движущейся по окружности радиусом , задается уравнением , где = 4 м/с4. Определите: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время = 5 с после начала движения; 3) полное ускорение для момента времени = 1 с.

1.10. Кинематические уравнения движения двух материальных точек имеют вид и , где , , . Определите: 1) момент времени, для которого скорости этих точек будут равны; 2) ускорения и для этого момента.

1.11. Диск радиусом 10 см вращается вокруг не­подвижной оси так, что зависимость угла поворота ради­уса диска от времени задается уравнением ( = 1 рад/с, = 1 рад/с2, = 1 рад/с3). Определите для точек на ободе диска к концу второй се­кунды после начала движения тангенциальное, нормальное и полное ускоре­ния.

1.12. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением ( =0,5 рад/с2). Определите к концу второй секунды после начала движения: 1) угловую скорость диска; 2) угловое ускорение диска; 3) для точки, находящейся на расстоянии 80 см от оси вращения, тангенциальное, нормальное и полное ускорения.

1.13. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением ( =0,1рад/с2). Определите полное ускорение точки на ободе диска к концу второй секунды после начала движения, если в этот момент линейная скорость этой точки 0,4 м/с.

1.14. Диск радиусом 0,2 м вращается вокруг неподвижной оси так, что зависимость угловой скорос­ти от времени задается уравнением , где . Определите для точек на ободе диска к концу первой секунды после начала движения полное ускорение и число оборотов, сделанных диском за первую минуту движения.

1.15. Диск радиусом 10 см вращается так, что зависимость угла поворота радиуса диска от времени задается уравнением ( = 2 рад, = 4 рад/с3). Определите для точек на ободе колеса: 1) нормальное ус­корение в момент времени 2 с; 2) тангенциальное ускорение для этого же момента; 3) угол поворота, при котором полное ускорение составляет с радиусом колеса 45°.

1.16. Якорь электродвигателя, имеющий частоту вращения 50 с-1, после выключения тока, сделав 628 оборотов, остановился. Определите угловое ускорение якоря.

1.17. Колесо автомобиля вращается равноускоренно. За время 2 мин оно изменило частоту вращения от 60 до 240 мин-1. Определите: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время.

1.18. Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найдите угловое ускорение колеса.

1.19. Колесо спустя 1 мин после начала вращения приобретает скорость, соответствующую частоте 720 об/мин. Найдите угловое ускорение колеса и число оборотов, сделанных колесом за эту минуту. Движение считать равноускоренным.

1.20. Колесо, вращаясь равнозамедленно, при торможении уменьшило частоту вращения за 1 мин с 300 об/мин до 180 об/мин. Найдите угловое ускорение колеса и число оборотов, сделанных за это время.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 6535; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.