Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Розв’язання. 1. Ідентифікуємо змінні моделі:




 

1. Ідентифікуємо змінні моделі:

— рівноважна кількість споживання продукту, ендогенна змінна;

— ціна за одиницю продукції, ендогенна змінна;

–– дохід на душу населення, екзогенна змінна;

–– витрати на виробництво одиниці продукції, екзогенна змінна.

Функція попиту: .

Функція пропозиції: .

Умова ринкової рівноваги: .

2. Специфікуємо модель на основі системи одночасових структурних рівнянь:

;

;

.

Цю систему одночасових структурних рівнянь можна переписати у вигляді:

;

.

3. Розглянемо умови ідентифікованості кожного рівняння моделі:

3.1. ;

;

;

, звідси перше рівняння системи є точноідентифікованим.

3.2. ;

;

;

, звідси друге рівняння системи є також точно ідентифікованим.

Оскільки обидва рівняння системи є точно ідентифікованими, то оцінку параметрів моделі можна виконати непрямим методом найменших квадратів.

4. Оцінимо параметри моделі НМНК.

4.1. Перейдемо від структурної до приведеної форми рівнянь. Для цього в другому рівнянні замість підставимо вираз у правій частині першого рівняння.

Запишемо:

(1); (1)

(2). (2)

Підставимо значення у друге рівняння, звідси:

;

;

;

.

Розділимо обидві частини рівняння на та отримаємо:

.

Замінимо

;

;

.

У результаті отримаємо друге рівняння моделі в приведеній формі:

.

А тепер значення структурного рівняння (2) підставимо в перше рівняння моделі (1) і наведемо його у приведеній форми.

;

.

Перенесемо в ліву частину рівняння:

.

Розділимо обидві частини рівняння на і отримаємо:

.

Замінимо:

;

;

.

У результаті отримаємо перше рівняння моделі в приведеній формі:

.

Таким чином, економетрична модель у приведеній формі:

;

.

 

Оцінимо параметри кожного рівняння цієї моделі за методом 1МНК:

.

Стандартні помилки:

 

;

.

.

Стандартні помилки:

;

.

Перейдемо від приведеної форми до структурної. Для цього розв’яжемо систему рівнянь:

,

де

;



;

.

Звідси:

;

.

 

Перемноживши матриці, одержимо систему рівнянь:

 

.

Ця система містить шість невідомих параметрів. Виразивши два з них через два інші (друге та третє рівняння) перейдемо до системи чотирьох лінійних рівнянь з чотирма невідомими. Розв’язавши її, знайдемо невідомі параметри економетричної моделі в структурній формі.

Отримати економетричні рівняння в структурній формі можна також виключивши змінну з першого рівняння в приведеній формі та з другого.

Визначимо з другого рівняння приведеної форми моделі:

 

;

;

.

 

Підставимо це значення в перше рівняння приведеної форми моделі:

 

 

Звідси: .

 

Визначимо з першого рівняння приведеної форми моделі:

 

;

;

.

 

Підставимо це значення в друге рівняння приведеної форми моделі:

 

;

Звідси .

 

Таким чином, економетрична модель у структурній формі запишеться так:

;

.

 

Визначимо коефіцієнти еластичності:

;

;

.

На основі коефіцієнтів еластичності можна зробити висновок, що при зростанні ціни на 1 % рівноважна кількість споживання продукту збільшиться на 0,016 %. При збільшенні доходу на 1 % рівноважна кількість споживання збільшиться на 0,298 %. Зростання затрат на виробництво на1% сприятиме зниженню ціни на 1,07%.

Серед цих співвідношень лише друге, яке характеризує зв’язок між доходом і кількістю споживання, може відповідати реальним умовам. Перше та третє співвідношення не відповідають теоретичним уявленням про цей зв’язок. На практиці, як правило, він має протилежний напрямок. Зростання цін може знижувати споживання, а збільшення затрат на виробництво буде сприяти зростанню цін, а не навпаки. Але тут треба мати на увазі, що дані розглянутого прикладу є умовними, які використані для відпрацювання методики використання НМНК.





Дата добавления: 2014-12-07; Просмотров: 386; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.017 сек.