Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Структура, структуризация, метаоперация




Структурность окружающего мира проявляется в единст­ве прерывности и непрерывности. Структурные уровни матери­альных систем простираются от элементарных частиц и полей до галактик и систем галактик, от отдельных молекул и живых клеток до организмов и их сообществ.

Структура предметной области (объекта наблюдений) оп­ределяется совокупностью устойчивых связей его элементов, обеспечивающих целостность и тождественность самому себе, т.е. то, что обеспечивает сохранение основных свойств при раз­личных внешних и внутренних изменениях [5].

Задача структуризации состоит в определении элементов структуры и их отношений, сохраняющих системные свойства, присущие объекту (предметной области).

Граф, как система элементов (вершин) и их отношений (ребер), является наиболее абстрактной формой представления каркаса структуры предметной области.

Размеченный и означенный граф служит моделью пред­метной области.

Для примера рассмотрим граф-схему представления ра­циональной системы, на основе которой субъект может моде­лировать поведение эмпирической системы наблюдений в зада­че о двух сигналах. Рациональная система открыта для расши­рения и приведена в приложении П.3.

Рациональные системы в приложении П3 представляют собой набор формул {Фi}, связанных отношением "выводимости" или "следования". Каждая Фi, тоже система по определению, элементами которой являются аргументы, а от­ношения определяются алгебраическими и реляционными опе­рациями.

Система Фi может быть представлена как ненаправленная (предикатная форма записи вида Фi @ 0) или направленная (функциональная форма записи, частный случай предикатной формы).

 

Например, для реляционной операции поиска макси­мума имеем:

Ф1 @ 0: | Xi | - max { Xi } = 0. (8.1)

 

 

 
 

 

 


1;....хn} - порождающие переменные;

| X |- порождаемая переменная;

max X - оператор порождения, реляционная операция выбора максимального значения xmax Î Х.

В случае алгебраической операции, например: у = b0+b1Х, имеем: Ф4 = 0 Û у- b0-b1Х = 0.

           
   
 
x
   
Y = f(x)
 
 


направленная система;

 

           
   
 
   
Ф4
 
 


ненаправленная.

 

Конституэнты b0 и b1 определяются по методу наимень­ших квадратов (см.П.3).

Рассмотрим структурные блоки системы {Ф011} для за­дачи "Сигнал".

Блок 1 - формирование исходных данных:

Ф0 ® Ф1 ® Ф0 / Ф1 = . Здесь - нормированные значения сиг­нала, т.е. {xi / xmax } =

Блок 2 - вычисление по формулам Ф2; Ф3; Ф4; Ф11 из данных Ф0 или Ф1. Здесь процесс интегрирования заменяется суммированием по методу трапеций.

Блок 3 - тригонометрическая аппроксимация данных ря­дами Фурье, формулы Ф5, Ф6, Ф7, Ф8, Ф9, Ф10, Ф11.

Блок 4 - определение метахарактеристик объекта от из­менения фактора F:

F Î { F0; F1; F2; …}.

Блоки 1, 2, 3 определены при конкретном значении F.

Структуризация системы на уровне первых трех блоков позволяет перейти к метасистемам блока 4.

Рассмотрим метасистемы Ф2 и Ф3 для вычисления метапараметров Хэф и Хср. В общем случае для непрерывного сигна­ла имеем:

(8.2)

Это функционалы, т. е. соответствия между множествами чисел с одной стороны (Хэф; ХсрÎN) и множествами функций с другой стороны (х(t); х2(t)).

Гомоморфизм системы (8.2) заключается в том, что одно и то же значение (слева) может иметь множество различных функций х(t) (справа).

Другими словами, за счет неоднозначности отображения теряется информация о форме конкретного сигнала х(t).

При этом получается обобщенный параметр слева (метапараметр).

Подобные операции, связанные с невосстановимой поте­рей информации о форме сигнала х(t), относятся к классу метаопераций, а системы, реализующие гомоморфного типа опе­рации, метасистемами. В данном случае имеем метасистему по­рождения для поверхности отклика вида:

Хэф = f(F) и Хср = f(F) при однократном эксперименте.

Отметим, что в основе вычислительного процесса для экспериментально полученной кривой х(t), лежат изоморфные преобразования типа оператора:

(8.3)

x(t)

Оператор связывает одно множество функций с другим множеством функций. Введение связанных переменных в виде пределов интегрирования меняет математические свойства опе­рации:

-интегрирование в заданных пределах равносильно опре­делению конкретной площади;

-дифференцирование в заданной точке равносильно оп­ределению конкретной касательной;

-арность предикатной формы в логике предикатов снижа­ется на единицу по каждому связанному аргументу;

-ненаправленная форма представления системы транс­формируется в направленную.

-и т.п.

Операции, составляющие изоморфизм преобразований, называются опера­циями структуризации. При структуризации сохраняется переход от конкретного к конкретному в полном объеме. При метаоперации переход от конкретного к конкретному приобретает черты обобщения кон­кретного по выделенному свойству, выделение эквивалентных классов объектов по заданному свойству.

Если при наличии операции структуризации базис систе­мы остается без изменения, то получающиеся системы называ­ются структурированными. Двойственные по определению сис­темы называются метасистемами.

Для указанных операций и систем введем следующие ус­ловные обозначения:

сХ, mХ - однократная структуризация или метаоперация, в результате которой из системы ХÎ{I;D;F} получены структу­рированная или метасистема (исходная, данных, порождения).

С2Х, М2Х, СМХ, МСХ - двукратное последовательное применение указанных операций.

В принятой системе обозначений пошаговые преобразо­вания (8.3), направленные к вычислению параметров сигнала (8.1), можно определить в виде схемы "С-М" операций над X = {xj}.

При конкретизации операций имеем:

С1 - взятие неопределенного интеграла С1Х = Qx;

С1-1 - дифференцирование С1 -1Х = Qx;

С2 - возведение в квадрат С2Х = Qу;

С2-1 - извлечение квадратного корня;

С2-1С2 Qу = X; и далее (см. рис. 8.1);

С3 - умножение на параметр, в данном случае на Т-1;

С3-1- деление на параметр;

С4 - извлечение корня из данных на входе:

С4 = С20,5; С4-1 = С2;

М1 - метаоперация вычисления определенного интеграла на интервале [0;Т].

На рис. 8.1а тип (С или М) операции и ее конкретная форма указаны разметкой дуг. Уровень порождаемой системы и ее конкретное значение показаны разметкой вершины графа.

Упражнения

1. Форма нормированного сигнала х(t) определена на от­резке
–1 £ х(t) £ 1, известно значение Хэф.

Требуется построить рациональную систему для опреде­ления Хmax в единицах измерения Хэф.

2. Постройте план для двухфакторного эксперимента в случае
FÎ{ F0; F1...Fmax} и Zn= Rn={R0; R1;...Rmax}.

а. Определите число испытаний по плану и в общем слу­чае при
FÎ {0,1,2,3,4,5}; R={0,1,3}.

б. Определите объем системы данных, получаемых с фо­тограмм, на каждой из которых записана система из двух сиг­налов i1(t) и U2(t).

3. Постройте граф-схему и матрицу смежности для компо­зиций из операций структуризации и метаоперации для перехода от системы Х к системе Хср.

а. Для непрерывного методологического типа данных х(t)=Х.

б. Для дискретного методологического типа данных {хj}, где хjÎХ.




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 409; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.