КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Принятие решений в условиях риска
Принятие решений в условиях риска характеризуется тем, что поведение среды имеет случайный характер, причем в этой случайности имеются закономерности стохастического типа. В общем случае это проявляется в том, что существует некоторая вероятностная мера, в соответствии с которой возникают те или иные состояния среды. Причем ЛПР имеет определенную информацию об этом. В наиболее простом случае это выглядит так: если множество состояний среды конечно, то есть , то вероятностная мера на нем может быть задана вероятностным вектором , где , – вероятность наступления -го состояния среды. Считаем, что оценочная структура ЗПР задана в виде оценочной функции. Целевая функция представлена в виде матрицы выигрышей . Такая ЗПР называется также «игрой с природой».
Выбирая -ю альтернативу, получаем один из выигрышей с вероятностью соответственно. Таким образом, исходом является величина . Следовательно, сравнение альтернатив и сводится к сравнению соответствующих им случайных величин. Для этого используется математическая ожидание и дисперсия . Математическое ожидание показывает величину ожидаемого выигрыша, а дисперсия – величину риска. Часто используется не дисперсия, а среднеквадратичное отклонение (СКО): . Получаем двухкритериальную задачу. Чтобы получить представление о математическом ожидании, рассмотрим следующую ситуацию: группа сдает три экзамена.
Результат: 4 1. Другой пример:
Подход А. Использование обобщенного критерия: где - некоторая постоянная, определяемая ЛПР. Этот критерий – взвешенная сумма М и с весами 1 и (- ). При , что характеризует ЛПР как человека, не склонного к риску. При , наоборот, , что характеризует ЛПР как человека, склонного к рискую Если же , то, следовательно, ЛПР безразличен к риску. Таким образом, – субъективный показатель меры склонности к риску (показатель осторожности). Будем считать, что ЛПР не склонен к риску (). Тогда критерий М будет позитивным, а – негативным. Возьмем из множества альтернатив две альтернативы и . Тогда , . Возможны два случая: а) Альтернативы и сравнимы по Парето. Пусть . Тогда и (причем хотя бы одно из этих неравенств является строгим) > , то есть > . Таким образом, в этом случае независимо от меры склонности ЛПР к риску (от значения ) . б) Альтернативы и несравнимы по Парето. Пусть, пример, > и > (больше ожидаемый выигрыш и больше риск). Тогда > . Таким образом, , если ; , если . В многокритериальной ЗПР основная трудность – в выборе одной оптимальной альтернативы из множества Парето-оптимальных альтернатив. Она легко преодолевается, если Парето-оптимальные альтернативы проранжировать по предпочтению. Это можно сделать с использованием вышеприведенных формул. Найдем и , где – множество Парето-оптимальных альтернатив ( > и > ). Назовем нижней границей несклонности к риску, а верхней границей несклонности к риску. Тогда всегда выполняется . Правила: 1) Если у ЛПР , то для этого ЛПР ранжирование множества Парето-оптимальных альтернатив по обобщенному критерию должно совпадать с ранжированием по показателю ожидаемого выигрыша , то есть более предпочтительней будет альтернатива с большим . 2). Если у ЛПР , то для этого ЛПР ранжирование множества Парето-оптимальных альтернатив по обобщенному критерию должно совпадать с ранжированием по показателю риска (есть более предпочтительной будет альтернатива с меньшим риском). Показатель (мера склонности к риску) предлагается определять на основе психологических качеств ЛПР на основе наблюдения за тем, как ЛПР принимает решения в различных ситуациях.
Подход В. Использование отношений доминирования по Парето. Пусть ЛПР не склонен к риску, тогда будет позитивным критерием, а –негативным. Условие доминирование по Парето означает, что для альтернативы получается такой же (или больший) ожидаемый выигрыш, но с меньшим (или таким же) риском. Окончательный выбор альтернативы производится из этого множества на основе неформальных добавочных соображений. При втором подходе производится сужение множества Парето с применением ранее изученных методов. Пример: выбор варианта производимого товара. Фирма может выпускать продукцию одного из следующих типов: зонты (З), куртки (К), плащи (П), сумки (С), шляпы (Ш), туфли (Т). Глава фирмы должен решить, какую продукцию выпускать предстоящим летом. Прибыль фирмы зависит от того, каким будет лето: дождливым (Д), жарким (Ж) или умеренным (У). Пусть ЛПР имеет информацию о вероятности наступления дождливого, жаркого или умеренного лета:
Ожидаемый выигрыш: М(З)=80*0,2+60*0,5+40*0,3=58; М(К)=58; М(П)=57; М(С)=56; М(Т)=55; М(Ш)=62,5.
Определим дисперсии (по формуле ) D (З)=6400*0,2+3600*0,5+1600*0,3-(58) =196; D (К)=336; D (П)=61; D (С)=84; D (Т)=100; D (Ш)=231,5. Среднеквадратичное отклонение: ; ; ; ; ; .
Результат сводим в таблицу:
Парето-оптимальное множество – . Из него выбирается одна альтернатива. Найдем оптимальное решение с помощью обобщенного критерия: q(З)=58-14 ; q(С)=56-9,2 ; q(К)=58-18,3 ; q(Т)=55-10 ; q(П)=57-7,8 ; q(Ш)=62,5-15,2 . Найдем и : = =0,16; = 3,8; = =0,74. =min(0,16; 3,8; 0,74)=0,16; =max(0,16; 3,8; 0,74)=3,8. По правилу ранжирования получаем: 1) Если для ЛПР , то Ш З П. Оптимальная альтернатива – Ш. 2) Если для ЛПР , то П З Ш. Оптимальная альтернатива – П. 3) Если для ЛПР , например, . Тогда: q(З)=58-14*2=30; q(П)=57-7,8*2=41,4; q(Ш)=62,5-15,2*2=32,1. Получаем П Ш З.
14. Оценка многокритериальных альтернатив – подход аналитической иерархии
Автор: Т. Саати. Analytic Hierarchy Process (AHP). Данный подход широко известен в настоящее время. Типичная постановка задачи, решаемой этим методом, заключается обычно в следующем: дана общая цель решения задачи, альтернатив и критериев оценки альтернатив. Требуется выбрать наилучшую альтернативу. Подход AHP состоит из ряда этапов: 1) Структуризация задачи в виде иерархической структуры с несколькими уровнями: цели – критерии – альтернативы. 2) ЛПР выполняет попарное сравнение элементов каждого уровня. Результаты сравнений переводятся в числа с помощью специальной таблицы. 3) Вычисляются коэффициенты важности для элементов каждого уровня, при этом проверяется согласованность суждений ЛПР. 4) Подсчитывается количественный индикатор качества каждой из альтернатив и определяется лучший из них. В качестве примера рассмотрим ситуацию выбора места для постройки аэропорта. Критерии для оценки альтернатив таковы: C1 – стоимость постройки (желательно подешевле), C2 – расстояние до города (желательно, чтобы расстояние было меньше), C3 – минимальное шумовое воздействие (число людей, подвергающихся шуму, должно быть минимально). Эти критерии противоречивы. Например: постройка аэропорта вдали от города возможно потребует меньших затрат, но время поездки будет больше.
Дата добавления: 2014-12-07; Просмотров: 513; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |