КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Формализация слабоструктурированных и неструктурированных задач экономики 1 страница
Введение В данном разделе рассматриваются примеры применения вероятностных методов прогнозирования сложных систем. Разбираются методы формализации слабоструктурированных и неструктурированных задач экономики; методы структуризации производственной функции и функции потребительского спроса. После изучения данного раздела рекомендуется ответить на вопросы для самопроверки и на вопросы теста 7. В случае если ответы на какие-либо вопросы вызовут затруднение или неуверенность, рекомендуется прочитать учебное пособие Мартыщенко, Л.А. Экономико-математические методы в системном анализе. Конспект лекций: /Л.А. Мартыщенко. – СПб.: Изд-во СЗТУ, 2008. – 82 с. (с. 11 – 23, 42 – 65). Самый ответственный этап системного анализа – формирование проблемной ситуации. Полученное множество проблем (проблематика) является исходным пунктом для системного анализа. После определения проблемы следующим по важности этапом анализа становится выявление целей. Содержание процесса перехода от целей к критериям и многие особенности этого перехода становятся ясными, если рассматривать критерии как количественные модели качественных целей. В самом деле, сформированные критерии в дальнейшем в некотором смысле заменяют цели. От критериев требуется как можно большее сходство с целями, чтобы оптимизация по критериям соответствовала максимальному приближении. К цели. С другой стороны, критерии не могут полностью совпадать с целями уже хотя бы потому, что они фиксируются в различных шкалах: цели – в номинальных, критерии – в более сильных, допускающих упорядочение. Критерий – это подобие цели, ее аппроксимация, модель. Конкретнее, критерий является отображением ценностей (воплощенных в целях) на параметры альтернатив (допускающие упорядочение). Определение значения критерия для данной альтернативы является, по существу, косвенным измерением степени ее пригодности как средства достижения цели. Неопределенность целевой функции имеет место в случае невозможности представления цели системы в виде скалярной целевой функции. Выбор целевой функции является одной из самых трудных проблем при проведении системных исследований. Часто целевые функции оказываются противоречащими друг другу. Например, этот факт нашел выражения в распространенной целевой функции добиться максимума эффективности с минимумом затрат. При наличии нескольких целевых функций (в том числе и противоречивых) математика не может дать однозначного ответа, но она может помочь принять решение и сделать правильный выбор. В этом и будет заключаться решение проблемы неопределённости целевой функции. Неопределённости среды и системы вызваны дефицитом информации об их состояниях. В этом случае не могут быть получены конкретные характеристики среды и системы (в том числе и стохастические). Методы решения таких задач наименее разработаны. Поэтому исследование сложных систем опирается не только на обширный математический аппарат, но и на целый ряд методов преодоления неопределенностей. Для сравнения различных целей системы вводится функция некомфортности , которая является мерой качества цели. Эта функция позволяет сравнить две целевые функции и . Если целевая функция предпочтительнее (, где – знак предпочтения), то . При цели эквивалентны, то есть ~ . Следовательно, выбор оптимальной функции сводится к минимизации функции ; . Каждое взаимодействие из множества может быть реализовано в системе, если мы поставим ему в соответствие целевую функции. Весомость различных _пии_вых функций (и взаимодействий) определяется через меру некомфортности, которую можно определить: 1) как взвешенную сумму , , где – целесообразность постановки данной целевой функции; – вес данной целевой функции для выполнения глобальной цели системы; – число сформулированных целевых функций; 2) по наиболее важнейшей целевой функции , . По уровню некомфортности определяют необходимость включения данной целевой функции в логическое множество целей системы. Значения коэффициентов , и пороговое значение определяются методом экспертных оценок. Пусть отношение предпочтения по важности ля всех частных целевых функций задано условием … Решение задачи может идти по следующим направлениям: 2. Выбор главной целевой функции при введении ограничений на остальные целевые функции. 3. Последовательная оптимизация по главной целевой функции с последующим введением уступок по другим наиболее важным целевым функциям. 4. Последовательная оптимизация по важности целевых функций с достижением по каждой требуемого значения. В первом случае наиболее важная целевая функция принимается за главную системы и ее стремятся минимизировать при заданных «пороговых» значениях остальных частных целевых функций: , , где ; . Для получения хорошего решения по менее важным целевым функциям на практике приходится делать уступки по другим наиболее важным целевым функциям. Этот подход реализуется в методе последовательных уступок (второй случай), который сводится к решению последовательности задач оптимизации: , , , где ; ; – оптимальное решение задачи для фиксированного ; – уступка по -й целевой функции. В качестве компромиссного решения принимается вектор . Этот метод удобен тем, что для каждой -й целевой функции видно, ценой каких уступок по -й целевой функции приобретается выигрыш. В третьем случае каждый раз задача решается до обеспечения , где обеспечивает требуемое значение -й целевой функции. Во втором и третьем случаях обеспечение требуемого значения приводит к необходимости введения уступок . Эффективная точка в процессе решения экономической задачи многокритериальной оптимизации ищется в области компромиссов. Минимизация в области компромиссов векторного критерия означает, что нельзя больше уменьшать значение одного из частных критериев, не увеличивая значения хотя бы одного из остальных. Для определения экстремума в области компромиссов необходимо перейти от задачи векторной оптимизации к задаче нелинейной оптимизации со специально сконструированной скалярной целевой функцией. Процесс образования скалярной функции, являющейся обобщенной целевой функцией для задачи многокритериальной оптимизации, называется объединением (свертыванием) векторного критерия оптимальности. В зависимости от информации о важности («весе») частных целевых функций можно выделить следующие типы объединения: объединение количественно «взвешенных» целевых функции; объединение целевых функций, для которых указано отношение предпочтения по важности; объединение целевых функций при отсутствии информации об их важности. Целевые функции , будем считать количественно «взвешенными», если каждой из них можно поставить в соответствие некоторое число , которое численно характеризует ее важность по сравнению с другими _пии_выми функциями. Параметры называются весовыми коэффициентами. Это позволяет получить скалярную целевую функцию системы путем образования суммы частных целевых функций, умноженных на свои весовые коэффициенты (метод взвешенных сумм) , где , . Весовые коэффициенты можно интерпретировать как субъективные вероятности. Под субъективной вероятностью понимается мера уверенности некоторого человека или группы людей в том, что данное событие в действительности будет иметь место. Субъективная вероятность получается в результате опроса эксперта или _пии_пы экспертов. Она находит применение в тех случаях, когда невозможно воспользоваться вероятность объективной. Этому может быть несколько причин: неполнота или отсутствие данных о наблюдении в прошлом, в частности, отсутствие аналогов исследуемой ситуации в прошлом, необоснованно высокая стоимость получения объективной вероятности, а также подозрение, сто ранее наблюдавшиеся закономерности и полученные объективные вероятности не будут иметь место в будущем. Как мера уверенности человека в возможности наступления событий субъективная вероятность может быть формально представлена различными способами: распределением вероятностей на множестве событий, бинарным отношением на множестве событий, не полностью заданным распределением вероятностей или частным бинарным отношением или другими способами. В зависимости от формы представления выделяют количественную и качественную субъективную вероятность. Количественная субъективная вероятность является вероятностной мерой на множестве событий, удовлетворяющей той же системе аксиом, что и вероятность объективная. Поэтому с формальной точки зрения количественная субъективная вероятность ничем не отличается от объективной вероятности. Разница заключается в том смысле, которой вкладывается в эти понятия. Практически построение количественной субъективной вероятности требует от эксперта указания числовых значений вероятности для ряда событий. Известно, однако, что такая количественная информация является для человека более сложной и потому ненадежной. Значительно более простой и потому более достоверной является информация, состоящая из ответов на вопросы о сравнительной вероятности (возможности) двух событий. В связи с этим большой практический интерес представляет нечисловая формализации субъективной вероятности, основанная на использовании отношений превосходства и равенств событий поверхности (функций некомфортности как мер качества цели). Аксиомы качественной вероятности выражают минимальные требования к последовательности и непротиворечивости субъективных суждений. Основным вопросом, связанным с понятием качественной вероятности, традиционно считается вопрос о возможности построения количественной вероятности, которая в каком-либо смысле согласована с качественной. Это явилось отражением того факта, что при решении практических задач до последнего времени использовалось только количественная вероятность, а качественная вероятность вызывала только теоретический интерес. Однако в последнее время в теории принятия решений появились специальные процедуры, рассчитанные на анализ качественной информации, в связи с чем понятие качественной вероятности приобрело самостоятельное практическое значение. Для получения количественных оценок субъективной вероятности разработано большое число методов. Однако практически все эти методы (метод отношений, метод собственного значения, метод равноценной корзины, метод переменного перевала, метод фиксированного интервала и др.) основаны на проведении опроса эксперта или группы экспертов. Поэтому представляется целесообразным при решении рассматриваемой проблемы использовать формализованные методы получения количественных оценок субъективной вероятности на основе теоретико-информационного подхода. Наличие ряда ситуаций, обладающих той или иной степенью неопределённости, требуют для своего описания привлечения математического аппарата, который бы априори включал в себя вероятность появления неопределённости и ее меры (энтропии Шеннона ). Опираясь на постулаты качественной вероятности (Финатти и Крупмана) для простого линейного отношения порядка приоритетов целевых функций , , используется так называемые оценки Фишборна , . Заметим, что помимо простого отношения порядка предпочтения имеет место и строгое отношение порядка для определения весовых коэффициентов используется зависимость . Для целевых функций, для которых может быть установлено усиленное линейное отношение порядка , для учёта значимости целевых функций используется зависимость . В качестве показателя, характеризующего степень снижения уровня неопределённости, может быть использован показатель избыточности , характеризующий степень близости вероятностных оценок к равномерному закону распределения (максимальной неопределённости при многокритериальной схеме формирования целевой функции). Сущность метода парных сравнений заключается в наиболее общей постановке в нахождении результирующего критерия выбора по оценкам, даваемым экспертами, и по показателям, полученным в результате информационно-статистического анализа исследуемой системы. Статистические методы обработки исходной информации основаны на предположении, что полученные оценки в силу ряда причин являются случайными, законы распределения которых в общем случае неизвестны. Задача метода парных сравнений заключается в том, чтобы внести меньшую погрешность (минимум недостающей информации) при идентификации законов распределения, вводимых в рассмотрение оценок, сформировать модель расчёта весовых коэффициентов этих оценок и определить и рассчитать обобщенный критерий сравнения исследуемых объектов. В тестах проверки статистических гипотез о принадлежности малой выборки ( и более) определенной генеральной совокупности в основном составляют инвариантные статистики, которые путем некоторых преобразований трансформируются к виду, обладающему свойством независимость от параметров распределения исходных случайных величин. Следует заметить, что универсальных преобразований подобного рода не существует, однако в каждом конкретном случае такое преобразование можно найти. В основе таких преобразований лежит переход от имеющихся выборочных наблюдений случайной величины к некоторым функциям от стандартных случайных величин и исключение мешающих с точки зрения математической статистики параметров распределении. Так, например, для нормального закона распределения используя соотношения , , где – стандартная нормально распределенная случайная величина с параметрами и , можно получить непараметрическое преобразование в виде *, , где – вариационный ряд, составленный из исходной выборки наблюдений. Статистика критерия распределена по закону (пусть ), тогда для минимального объёма выборки . Если случайные величины взаимно независимы и распределены одинаково нормально и из них составлен вариационный ряд , , то закон распределения статистики , , имеет вид . Таким образом, используя полученные законы распределения инвариантной статистики можно проверить статистическую гипотезу о принадлежности выборки генеральной гауссовой совокупности. Аналогичным образом можно ввести в рассмотрение инвариантные статистики для выборки из других генеральных совокупностей. Для экспоненциального закона с функцией распределения , применяя преобразования Н.В. Смирнова (метод обратных функций), можно получить следующее представление случайных величины , , где – случайная величина, равномерно распределенная на интервале . Очевидно, что отношение этих случайных величин не зависит от параметра распределения . Следовательно, для выборки случайных величин объемом из генеральной совокупности с экспоненциальным законом распределения преобразование вида является инвариантным преобразованием выборочных _пии_мдений. Действительно, можно показать, что если случайные величины взаимно независимы и распределены одинаково экспоненциально и если – соответствующий вариационный ряд, тогда плотность совместного распределения отношений , инвариантных к параметру экспоненциального закона, имеет вид . Аналогично можно внести в рассмотрение законы распределения инвариантных статистик из выборок однопараметрических законов распределений (Рэлея, одностороннего нормального, Максвелла, показательно-степенного и др.). Привлечение однопараметрических законов распределений обусловлено тем обстоятельство, что в методе парных сравнений рассматриваются две случайные величины (два параметра оценки эффективности (системы), имеющих стохастическую природу). Выбор предпочтительного закона распределения в этом случае представляется целесообразным производить на основе принципа стохастического доминирования введением – упорядочения рассматриваемых законов распределений. Дальнейшим развитием идеи стохастического доминирования может служить использование экстремальных распределений экстремальных величин. Если при парном сравнении имеют место ряд качественных показателей (строгое ранжирование), допустим, что объект превосходит объект по качественных показателей , и наоборот объект превосходит объект по показателям , то, используя принцип максимума неопределённости и меру можно показать, что вероятностные меры по этим показателям имеют виз и . Для этого достаточно решить следующую экстремальную задачу , . В качестве модели расчёта весовых коэффициентов вводимых в рассмотрение показателей представляется целесообразным использовать энтропийную меру и зависимость , где – общее число показателей ( – число показателей, доминирующих для исследуемой системы, – число показателей, доминируемых для этой же системы). Тогда обобщенные показатели сравнения можно определить следующим образом , , где ; . Согласно введенным обобщенным оценочным показателям и оптимальным решением в методе парных сравнений систем и является выполнение критериального условия (или ). Постановка оптимизационных задач обусловливает необходимость разработки эконометрических моделей элементов экономической структуры. Основу эконометрических моделей составляют два вида функциональных зависимостей: производственные функции и функции потребительского спроса. Производственная функция выражает, какое количество продукта можно произвести за единицу времени, обладая капиталом и трудовыми ресурсами . Понятие производственной функции неявно включает в себя некоторую оптимизацию. Величина – это максимально возможное количество продукта, которое можно произвести при наилучшем использовании капитальных и трудовых ресурсов. Именно это условие максимизации приводит к часто налагаемому требованию выпуклости функции . Точнее, выпуклость функции есть следствие оптимальности распределения ресурсов и . При формализованном построении производственной функции обычно предполагается, что функции определены при всех , неотрицательны, положительно однородны первой степени , дважды непрерывно дифференцируемы, причем
Дата добавления: 2014-12-07; Просмотров: 1230; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |