КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общие сведения о двигателях постоянного тока
Лекция №16. Двигатели постоянного тока. Способы пуска, характеристики двигателей Цель лекции: - ознакомить студентов; - с классификацией двигателей постоянного тока; - характеристиками двигателей постоянного тока. Содержание лекции: - общие сведения о двигателях постоянного тока; - способы пуска; - характеристики двигателей. Двигатели постоянного тока находят широкое применение в промышленных, транспортных, крановых и других установках, где требуется широкое плавное регулирование частоты вращения. Одна и та же электрическая машина может работать как в режиме генератора, так и в режиме двигателя. Это свойство электрических машин называют обратимостью. Предположим, что к двигателю подведено напряжение UСЕТИ = const. При заданной на рисунке 16.1 полярности полюсов и направлении тока IЯ в якоре (обмотка якоря показана только одним проводником) на валу двигателя создается вращающий электромагнитный момент М, направленный против вращения часовой стрелки. Под действием этого момента двигатель вращается в направлении момента с постоянной частотой п.
Рисунок 16.1 – Направление момента и противо-э.д.с. обмотки якоря двигателя
Для двигателя, работающего с постоянной частотой вращения, можно составить уравнение э.д.с. UСЕТИ=ЕЯ+IЯRЯ, где ЕЯ и IЯ – э.д.с и ток, соответствующие установившемуся режиму работы; IЯRЯ – падение напряжения в сопротивлениях цепи якоря двигателя. Уравнение моментов двигателя. Электромагнитный момент двигателя
М=(1/π)NIЯpФ/(2а)=CМIЯФ (16.1)
создается в результате взаимодействия основного магнитного поля Ф и тока в обмотке якоря IЯ и расходуется на преодоление тормозящих моментов: а) момента х.х. М0; б) полезного момента М2; в) динамического момента Mj. Момент х.х. М0 существует при любом режиме работы двигателя и определяется трением в подшипниках, трением щеток о коллектор, вентиляционными потерями и потерями в стали. Полезный момент М2 определяется свойствами рабочей машины и характером производственного процесса. Динамический момент возникает при всяком изменении частоты вращения двигателя Mj=±J(dω/d), (16.2)
где J – момент инерции всех вращающихся частей; ω – угловая скорость вращения якоря. Если частота вращения двигателя увеличивается, то момент Еj положителен и, складываясь с моментами М0 и М2, увеличивает тормозной момент на валу двигателя. При уменьшении п момент Mj отрицателен и уменьшает общий тормозной момент. Зависимость между вращающим и тормозным моментами двигателя на его валу определяется законом равновесия моментов: в любых условиях работы двигателя эти моменты находятся во взаимном равновесии, т.е. равны друг другу по величине, но направлены в противоположные стороны. При n=const момент Mj=0 и тогда
М=М0+М2=МСТ (16.3)
где МСТ – статический момент сопротивления на валу двигателя. Энергетическая диаграмма двигателя. На рисунке 16.2 изображена энергетическая диаграмма двигателя параллельного возбуждения, работающего в установившемся режиме, т.е. при n=const. К двигателю из сети подводится мощность P1=UCI, которая покрывает потери в цепи возбуждения RВ и электрические потери в цепи якоря I2ЯRЯ, а оставшаяся ее часть составляет электромагнитную мощность якоря РЭМ=ЕЯIЯ преобразующуюся в полную механическую мощность РМ двигателя. Полезная механическая мощность на валу двигателя Р2 меньше полной механической мощности РМ на величину мощности P0 необходимой для покрытия потерь в стали РС и механических потерь РМЕХ, т.е.
Р2=РМ – (РС+РМЕХ).
Рисунок 16.2 – Энергетическая диаграмма двигателя параллельного возбуждения
В зависимости от способа включения обмотки возбуждения и обмотки якоря различают следующие типы двигателей постоянного тока: а) параллельного возбуждения; б) последовательного возбуждения; в) смешанного возбуждения, в которых имеются две обмотки возбуждения: параллельная и последовательная. Двигатели постоянного тока оцениваются по совокупности следующих видов характеристик: пусковых, рабочих, регулировочных и механических. Пусковые характеристики. Пусковые характеристики определяются следующими величинами: а) пусковым током IПУСК характеризуемым отношением IПУСК / IНОМ; б) пусковом моментом МПУСК, характеризуемым отношением МПУСК / МНОМ в) плавностью пусковой операции; г) временем пуска в ход tПУСК; д) экономичностью операции, определяемой стоимостью пусковой аппаратуры. В начальный момент пуска двигателя его якорь неподвижен, противо-э.д.с. в обмотке якоря равна нулю и ток в якоре двигателя IЯ=UС / RЯ. Сопротивление цепи якоря невелико, поэтому пусковой ток превышает номинальный в 20 и более раз. Резкий скачок тока при пуске создает на валу двигателя большой пусковой момент, который может вызвать механические разрушения, как самого двигателя, так и исполнительного механизма, привести к резкому падению напряжения в сети и вызвать интенсивное искрение под щетками. Поэтому при пуске двигателя в ход для ограничения пускового тока применяют пусковые реостаты, включаемые последовательно в цепь якоря (см. рисунок 16.3). По мере увеличения частоты вращения якоря противо-э.д.с. увеличивается, а ток якоря уменьшается, поэтому сопротивление реостата следует уменьшить так, чтобы в конце пуска оно было полностью выведено, и чтобы пусковой ток превышал номинальный не более чем в два-три раза.
Рисунок 16.3 – Схема включения пускового реостата в цепь двигателя параллельного возбуждения
Дата добавления: 2014-12-07; Просмотров: 979; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |