Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Применение средств алгебры логики для описания функционирования устройств компьютера




Дизъюнктивная нормальная форма

Конъюнктивная нормальная форма

Нормальные формы

Элементарной конъюнкцией называется конъюнкция нескольких переменных, взятых с отрицанием или без отрицания, причём среди переменных могут быть одинаковые.

Элементарной дизъюнкцией называется дизъюнкция нескольких переменных, взятых с отрицанием или без отрицания, причём среди переменных могут быть одинаковые.

Всякая конъюнкция элементарных дизъюнкций называется конъюнктивной нормальной формой, то есть КНФ.

Совершенной КНФ (СКНФ) называется КНФ, в которой нет равных элементарных дизъюнкций и все они содержат одни и те же переменные, причём каждую переменную только один раз (возможно с отрицанием).

Всякая дизъюнкция элементарных конъюнкций называется дизъюнктивной нормальной формой, то есть ДНФ.

Совершенной ДНФ (СДНФ) называется ДНФ, в которой нет равных элементарных конъюнкций и все они содержат одни и те же переменные, причём каждую переменную только один раз (возможно с отрицанием).

Для описания того, как функционируют аппаратные средства компьютера очень удобен математический аппарат алгебры логики, поскольку основной системой счисления в компьютере является двоичная, в которой используются цифры «1» и «0».

Следовательно, одни и те же устройства компьютера могут применяться для обработки и хранения как числовой информации, представленной в двоичной системе счисления, так и логических переменных; на этапе конструирования аппаратных средств алгебра логики позволяет значительно упростить логические функции, описывающие функционирование схем компьютера, и, следовательно, уменьшить число элементарных логических элементов, из десятков тысяч которых состоят основные узлы компьютера.

Данные и команды в памяти компьютера и в регистрах процессора представляются в виде двоичных последовательностей различной структуры и длины.

Существуют различные физические способы кодирования двоичной информации, но чаще всего единица кодируется более высоким уровнем напряжения, чем ноль.

В логической схеме компьютера выделяют логические элементы. Логический элемент компьютера – это часть электронной логической схемы, которая реализует элементарную логическую формулу.

Логическими элементами компьютеров являются электронные схемы «И», «ИЛИ», «НЕ», «И-НЕ», «ИЛИ-НЕ» и другие (называемые также вентилями), а также триггер. С помощью этих схем можно реализовать любую логическую формулу, описывающую работу устройств компьютера.

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую формулу, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Схема «И» реализует конъюнкцию двух или более логических значений. Условное обозначение на структурных схемах схемы «И» с двумя входами представлено на рис. 5.

Рис. 5. Схема «И»

На выходе схемы «И» значение «1» будет тогда и только тогда, когда на всех входах будут «1». Когда хотя бы на одном входе будет «0», на выходе также будет «0».

Операция конъюнкции на функциональных схемах обозначается знаком «&» (читается как «амперсэнд»), являющимся сокращенной записью английского слова and.

Схема «ИЛИ» реализует дизъюнкцию двух или более логических значений. Условное обозначение схемы «ИЛИ» представлено на рис. 6.

Рис. 6. Схема «ИЛИ»

Значение дизъюнкции равно «1», если сумма значений операндов больше или равна «1». Когда хотя бы на одном входе схемы «ИЛИ» будет «1», на её выходе также будет «1».

Операция дизъюнкции на функциональных схемах обозначается знаком «1».

Схема «НЕ» (инвертор) реализует операцию отрицания. Условное обозначение схемы НЕ представлено на рис. 7.

Рис. 7. Схема «НЕ»

Если на входе схемы – «0», то на выходе будет «1». Когда на входе – «1», на выходе будет «0».

Схема «И-НЕ» состоит из элемента «И» и инвертора и осуществляет отрицание результата схемы «И». Условное обозначение схемы «И-НЕ» представлено на рисунке 8. Таблица истинности схемы «И-НЕ» – это таблица 5.

Рис. 8. Схема «И-НЕ»

Таблица истинности схемы «И-НЕ»

Таблица 5

х у
     
     
     
     

Схема «ИЛИ-НЕ» состоит из элемента «ИЛИ» и инвертора и осуществляет отрицание результата схемы «ИЛИ». Условное обозначение схемы «ИЛИ-НЕ» представлено на рис. 9, а таблица истинности схемы ИЛИ-НЕ – это табл. 6.

Рис. 9. Схема «ИЛИ-НЕ»

Таблица истинности схемы «ИЛИ-НЕ»

Таблица 6

х у
     
     
     
     



Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 555; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.