Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Постановка задачи. Тема 6.4. Численное интегрирование




Тема 6.4. Численное интегрирование

Применить кубическую сплайн-интерполяцию, при которой экспериментальные точки соединяются отрезками кубических полиномов.

Для этого одновременно используются две функции: interp(s,x,y,t ) и cspline(x,y), где x – вектор значений аргументов, y – вектор значений функции, s – вектор вторых производных, создаваемый функцией cspline, t – значение аргумента, при котором вычисляется функция.

 

 

6.4.1. Постановка задачи

6.4.2. Метод прямоугольников

6.4.3. Формула трапеций

6.4.4. Формула Симпсона

6.4.5. Оценка погрешности численного интегрирования

6.4.6. Технология вычисления интегралов в среде математических пакетов

 

Из курса математического анализа известно, что, если функция f(x) непрерывна на отрезке [a;b] и дифференцируема, то определенный интеграл от этой функции в пределах от a до b существует и может быть вычислен по формуле Ньютона-Лейбница:

Если первообразную функцию F(x) не удается выразить аналитически через элементарные функции или если при проведении практических расчетов подынтегральная функция f(x) задается в виде таблицы, то это приводит к необходимости замены аналитического интегрирования численными методами.

Для функции f(x), заданной в прямоугольной системе координат на интервале [a;b], этот интеграл численно равен площади, ограниченной кривой f(x), осью Ox и двумя ординатами ac и bd.

Рис. 6.4.1-1

 

Задача численного интегрирования заключается в нахождении значения определенного интеграла через ряд значений подынтегральной функции yi=f(xi), заданной в точках xi (i=0,1,…,n). Причем, x0 = a, xn = b. Чаще всего интервал разбивают на подынтервалы длинойh = xi+1 - xi.

Применительно к однократному интегралу, формулы численного интегрирования представляют собой квадратурные формулы вида:

гдеAi – числовые коэффициенты, называемые весами квадратурной формулы, аxi – точки из отрезка - узлами квадратурной формулы, n > 0 – целое число.

Искомый определенный интеграл можно представить в виде суммы интегралов:

На каждом i -м отрезке функция аппроксимируется (заменяется) некоторой другой легко интегрируемой функцией gi(x). В результате получаем следующую квадратурную формулу:

.

Для решения поставленной задачи подынтегральную функцию f(x) необходимо заменить приближенной функцией, которая может быть проинтегрирована в аналитическим виде. В качестве такой функции обычно используют полином Р(х) с узлами интерполяции в точках х0, х1, х2, …,хn. В этих точках значения функции и интерполяционного полинома полностью совпадают f(xi) = Р(xi).

Для получения простых формул интегрирования используют полиномы нулевой, первой и второй степени и соответственно получают формулы численного интегрирования: прямоугольников, трапеций и Симпсона.

Очевидно, что замена функции f(x) интерполирующим полиномом приводит к образованию погрешности вычисления значения интеграла

где I1 – точное значение интеграла, I – значение интеграла, вычисленного численным методом, а – погрешность метода.

Отметим, что увеличение числа подынтервалов n (или уменьшение длины шага интегрирования h) ведет к уменьшению погрешности.

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 434; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.