Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Формула Симпсона. Разобьем интервал интегрирования [a;b] на n равных отрезков (рис




Формула трапеций

Разобьем интервал интегрирования [a;b] на n равных отрезков (рис. 6.4.3-1) и восстановим из полученных точек a, х1, x2, …, b перпендикуляры до пересечения с графиком функции. Соединив последовательно точки пересечения, представим площадь полученной криволинейной трапеции как сумму прямолинейных трапеций, площади которых легко подсчитать. Заменив подынтегральную функцию f(x) в пределах элементарного отрезка [xi;xi+1] интерполяционным многочленом первой степени, получим следующие формулы для элементарных площадей:

Рис. 6.4.3-1

 

Тогда общая площадь равна:

Отсюда получаем формулу трапеций:

 

(6.4.3-1)

Для получения формулы Симпсона применяется квадратичный интерполирующий полином, следовательно, за элементарный интервал интегрирования принимается отрезок [xi;xi+2]. Поэтому разобьем интервал интегрирования [a;b] наn отрезков, где n=2m – четное число (рис. 6.4.4-1).

Рис. 6.4.4-1

 

Для получения интерполирующей функции на интервале [xi;xi+2] воспользуемся первой интерполяционной формулой Ньютона, используя в качестве узлов интерполяции точки xi, хi+1 и xi+2.

(6.4.4-1)

В пределах отрезка [xi;xi+2], на котором подынтегральная функция аппроксимирована многочленом (6.4.4-1), получим приближенную формулу Симпсона:

(6.4.4-2)

Для отрезка [x0;x2]

Для отрезка [x2;x4]

Тогда для всего интервала интегрирования [a;b] формула Симпсона выглядит:

или

при (6.4.4-3)




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 598; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.