КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Использование методов математической статистики для анализа данных
Методы математической статистики, используемые в клинической практике
параметра в одной из групп в определенную сторону относительно другой; двусторонние — при отсутствии такого предположения); 3) зависимости/независимости выборок. Независимыми считаются, например, группы пациентов, которые были рандомизированы (случайным образом отобраны). Зависимыми являются, например, данные одной и той же группы больных до и после лечения. Таким образом, для решения задач используют ряд параметрических и непараметрических статистических методов (табл. 1). Приведенный обзор методов, используемых при решении разных задач, демонстрирует только подход к анализу данных и не претендует на полноту. Более подробно об этих методах можно узнать в соответствующей учебной литературе. В учебном издании по медицинской информатике было бы излишне приводить подробные описания методов математической статистики, тем более что в последние годы вышло достаточно большое количество специальной литературы, рассчитанной на практикующего врача, с описанием как наиболее часто использующихся методов, так и работы со статистическими пакетами. Поэтому здесь мы ограничимся лишь краткими сведениями, полезными для клинициста, но не достаточными для приобретения реальных знаний по математической статистике. Сравнение двух независимых групп по одному параметру. t-Критерий Стьюдента для независимых выборок (групп) является наиболее популярным методом решения этой задачи, суть которой сводится к проверке того, различаются ли средние значения параметра в сравниваемых группах. Критерий корректно использовать только при условии нормального распределения параметров в каждой группе и равенства дисперсий распределений параметров в группах. Суть применения t-критерия Стьюдента для независимых выборок заключается в проверке нулевой гипотезы о том, что средние значения параметра в группах не различаются. Если нулевая гипотеза по результатам анализа отклоняется (р < 0,05), принимается альтернативная гипотеза о том, что средние значения параметров в группах различаются. Правомочно использовать t-критерий Стьюдента для независимых выборок лишь при достаточно большом объеме выборок, что в клинической медицине бывает редко. Кроме «классического» t-критерия Стьюдента существует его модификация, не требующая равенства дисперсий распределений параметров в группах. В настоящее время, когда врачи становятся более сведущими в математической статистике, критерий Манна-Уитни (Мапп — Whitney U-test) используют почти так же часто, как t-критерий. Его применяют для сравнения выборок по количественным параметрам в случаях, когда хотя бы одна из сопоставляемых выборок имеет распределение, отличное от нормального, или если характер распределения параметра неизвестен (проверка на нормальность не проводилась). Суть метода заключается в проверке нулевой гипотезы о равенстве средних рангов в группах, т.е. до проверки гипотезы осуществляется ранжирование значений параметра в каждой группе. Если нулевая гипотеза отклоняется, принимается альтернативная гипотеза о том, что между рангами групп есть различия. Сравнение двух зависимых групп по одному параметру. t-Критерий Стьюдента для зависимых выборок, так же как и t-критерий Стьюдента для независимых выборок, можно применять только при условии нормального распределения параметров в каждой группе и равенства дисперсий распределений параметров в группах. В большинстве случаев на реальных клинических данных эти условия не выполняются, поэтому применение метода не правомочно. Критерий Вилкоксона (Wilcoxon matched pairs test) — один из самых мощных непараметрических критериев. Его используют для парного сравнения выборок количественных (или качественных порядковых) параметров в тех случаях, когда хотя бы в одной из анализируемых выборок распределение величин параметра не является нормальным. При применении критерия Вилкоксона проверяется нулевая гипотеза об отсутствии различий выборок. Если она отклоняется (р < 0,05), принимается альтернативная — об их наличии. Анализ взаимосвязи двух параметров. Общепринятым способом выявления взаимосвязи между переменными является расчет корреляции. Следует подчеркнуть, что обнаружение корреляции между двумя переменными не свидетельствует о существовании причинной связи между ними, а лишь указывает на возможность таковой (или фактора, определяющего изменение обеих переменных). Обычно при использовании методов корреляции перед исследователем возникает вопрос о тесноте связи (степени сопряженности) переменных. Если каждому заданному значению одной переменной соответствуют близкие друг к другу, тесно расположенные около средней величины значения другой переменной, то связь является более тесной; если эти значения сильно варьируют, связь менее тесная. Таким образом, мера корреляции (значение коэффициента корреляции г) указывает, насколько тесно связаны между собой параметры. Чем больше коэффициент корреляции, тем с большей степенью уверенности можно говорить о наличии линейной зависимости между параметрами. Условно выделяют следующие уровни корреляционной связи: слабая — около 0,3; умеренная — от 0,31 до 0,5; заметная — от 0,51 до 0,7; высокая — 0,71 и более. По форме корреляция бывает прямой (при увеличении значений первой переменной значения второй также увеличиваются) и обратной (при увеличении значений первой переменной значения второй убывают). Коэффициент корреляции г принимает значения от -1 до +1. Обсуждать наличие корреляции имеет смысл только в тех случаях, когда она статистически значима (р < 0,05). Отсутствие линейной корреляции не означает, что параметры независимы: связь между ними может быть нелинейной. Наиболее часто применяемыми в настоящее время методами исследования корреляции являются параметрический анализ по Пирсону и непараметрический анализ по Спирмену. Корреляционный анализ по Пирсону используется при решении задачи исследования линейной связи двух нормально распределенных параметров. Проверяется нулевая гипотеза об отсутствии связи между параметрами, т.е. что г- 0. Кроме проверки на нормальность распределения каждого параметра до проведения корреляционного анализа рекомендуется строить график в координатах оцениваемых параметров, чтобы визуально определить характер зависимости. Если нулевая гипотеза отклоняется (р < 0,05), можно говорить о наличии значимой взаимосвязи между параметрами. Корреляционный анализ по Спирмену применяется для исследования взаимосвязи двух параметров, если распределение хотя бы одного из них отлично от нормального. Проверяется нулевая гипотеза о том, что коэффициент корреляции равен нулю. Если нулевая гипотеза отклоняется (р < 0,05), взаимосвязь между параметрами есть. Одновременный анализ трех и более параметров. Наряду с методами одномерного и двухмерного анализа существует большое количество методов многомерного (многофакторного) анализа данных. Они дают возможность одновременно анализировать три и более переменные. К наиболее используемым методам многомерного анализа относятся: регрессионный анализ, дискриминантный анализ, кластерный анализ, дисперсионный анализ, анализ главных компонентов, факторный анализ. В клинических работах методы многофакторного анализа используются гораздо реже, чем описательная статистика, методы сравнения двух групп по параметру и корреляционный анализ, I хотя в последние годы наметилась тенденция к более широкому 1 применению регрессионного анализа. Регрессионный анализ представляет собой метод статистического анализа, позволяющий исследовать вид зависимости одного параметра от нескольких других. Наряду с дискриминантным и кластерным он является одним из методов статистического моделирования. Моделью при этом является получаемое уравнение регрессии. С помощью рассчитываемых в ходе peгрессионного анализа константы и коэффициентов можно прогнозировать величину исследуемого параметра в зависимости от значений других переменных. В отличие от корреляционного анализа, который лишь дает возможность установления факта взаимосвязи параметров, он описывает вид зависимости переменных. Регрессионный анализ подразделяют на однофакторный (один независимый параметр) и многофакторный (два и более независимых параметра), а также линейный и нелинейный. Линейный регрессионный анализ используется в тех случаях, когда все задействованные в нем параметры являются нормально распределенными, количество значений параметров намного превышает количество самих параметров и т.д. Число ограничений на корректное проведение регрессионного анализа достаточно велико. Самым употребляемым видом нелинейного регрессионного анализа в настоящее время является логистический. Главными условиями его применения является возможность принятия зависимым параметром только двух значений (например, есть заболевание — единица, нет заболевания — нуль). Все остальные параметры, задействованные в анализе, должны быть независимыми, при этом они могут быть любыми по типу — как количественными, так и качественными. Дискриминантный анализ — это один из методов решения задачи классификации — разработки правила отнесения исследуемого объекта к одной из нескольких групп на основании величин выделенных параметров. Кластерный анализ является методом статистической группировки объектов или параметров исследования в кластеры (от англ. cluster — гроздь, скопление) — подмножества исследуемой выборки. Использование в практической деятельности врача методов многофакторного статистического анализа выходит за рамки необходимых знаний и навыков, которыми он должен владеть. Их применение требует глубоких знаний математической статистики, определенного опыта работы с медицинскими данными, а порой — даже искусства. I
Дата добавления: 2014-12-27; Просмотров: 747; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |