Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Отношения между множествами. Подмножество




Способы задания множества

Множество можно задать, перечислив все его элементы.

Например, множество А состоит из чисел 3, 4, 5 и 6. Поскольку все его элементы окажутся перечисленными, то это множество задано. При этом возможна запись А = {3, 4, 5, 6}, в которой перечисленные элементы заключаются в фигурные скобки.

Однако если множество бесконечно, то его элементы перечислить нельзя. Трудно, таким образом, и задать конечное множество с большим числом элементов. В таких случаях применяют другой способ задания множеств: указывают характеристическое свойство его элементов.

Определение. Характеристическое свойство – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит.

Пример

Множество А – двузначных чисел. Свойство, которым обладает любой элемент данного множества, - “быть двузначным числом”. Это характеристическое свойство дает возможность решить вопрос о том, принадлежит ли какой-либо объект множеству А или не принадлежит. Так, число 21 содержится в множестве А, поскольку оно двузначное, а число 145 множеству А не принадлежит – оно не является двузначным.

Иногда одно и тоже множество можно задать, указав различные характеристические свойства его элементов. Например, множество квадратов можно задать как множество прямоугольников с равными сторонами и как множество ромбов с прямыми углами.

Вывод: чтобы задать некоторое множество, достаточно либо перечислить все его элементы, либо указать характеристическое свойство его элементов. Второй способ более общий: он позволяет задавать и конечные и бесконечные множества в отличие от первого способа, который, как правило, можно использовать для задания конечных множеств с небольшим количеством элементов. Хотя первый способ используется иногда и для задания бесконечных множеств. Например, множество натуральных чисел может быть задано в виде N = {1, 2, 3, …}. Однако такой способ записи возможен лишь тогда, когда по записанной части множества ясно, что означает многоточие.

Одно и тоже множество может быть задано и первым и вторым способом.

Пример

Множество В натуральных чисел, меньших 7, заданное посредством указания характеристического свойства его элементов, можно задать и так: В={1,2,3,4, 5, 6}, т.е. перечислив все его элементы.

Даны два множества:

А = {a, b, c, d, e} и B = {b, d, k, e}. Видим, что элементы b и d принадлежат одновременно множеству А и множеству В. Говорят, что b и d – общие элементы множеств А и В, а сами множества пересекаются.

Замечание. Если множества не имеют общих элементов, то говорят, что они не пересекаются.

Рассмотрим теперь множества А = {a, b, c, d, e} и В = {c, d, e}. Они пересекаются, и, кроме того, каждый элемент множества В является элементом множества А. В этом случае говорят, что множество В включено в А или что множество В является подмножеством множества А.

Определение. Множество В называется подмножеством множества А, если каждый элемент множества В является также элементом множества А.

Если В – подмножество множества А, то пишут: В Ì А – и читают: «В – подмножество А», «В – включается в А».

Считают, что пустое множество является подмножеством любого множества, т. е. Æ Ì А, и что любое множество является подмножеством самого себя, т.е. А Ì А. Поэтому среди всех подмножеств заданного множества А должно быть обязательно пустое множество и само множество А.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 754; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.