КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Понятие дроби
ТЕМА 17. О РАСШИРЕНИИ МНОЖЕСТВА НАТУРАЛЬНЫХ ЧИСЕЛ Содержание 1. Понятие дроби. 2. Положительные рациональные числа. 3. Запись положительных рациональных чисел в виде десятичных дробей. 4. Действительные числа. Основная литература [1, 2, 6, 7, 9-13, 17, 18, 23, 33, 34]; Дополнительная литература [31, 43, 55] Введение. Большинство применений математики связано с измерением величин. Однако для этих целей натуральных чисел недостаточно: не всегда единица величины укладывается целое число раз в измеряемой величине. Чтобы в такой ситуации точно выразить результат измерения, необходимо расширить запас чисел, введя числа, отличные от натуральных. К этому выводу люди пришли еще в глубокой древности: измерение длин, площадей, масс и других величин привело сначала к возникновению дробных чисел - получили рациональные числа, а в V в до н.э. математиками школы Пифагора было установлено, что существуют отрезки, длину которых при выбранной единице длины нельзя выразить рациональным числом. Позднее, в связи с решением этой проблемы, появились числа иррациональные. Рациональные и иррациональные числа назвали действительными. Строгое определение действительного числа и обоснование его свойств было дано в XIX в. Действительные числа - не последние в ряду различных чисел. Процесс, начавшийся с расширения множества натуральных чисел, продолжается и сегодня - этого требует развитие различных наук и самой математики. Знакомство учащихся с дробными числами происходит, как правило, в начальных классах. Затем понятие дроби уточняется и расширяется в средней школе. В связи с этим учителю необходимо владеть понятием дроби и рационального числа, знать правила выполнения действий над рациональными числами, свойства этих действий. Все это нужно не только для того, чтобы математически грамотно ввести понятие дроби и обучать младших школьников выполнять с ними действия, но и, что не менее важно, видеть взаимосвязи множеств рациональных и действительных чисел с множеством натуральных чисел. Без их понимания нельзя решить проблему преемственности в обучении математике в начальных и последующих классах школы. Расширение множества N натуральных чисел будет происходить в такой последовательности: сначала строится множество Q+ положительных рациональных чисел, затем показывается, как его можно расширить до множества R+ положительных действительных чисел, и, наконец, очень кратко описывается расширение множества R+ до множества R всех действительных чисел. Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис. 1). При измерении оказалось, что отрезок х состоит из трех отрезков, равных е, и отрезка, который короче отрезка е. В этом случае длина отрезка х не может быть выражена натуральным числом. Однако если отрезок е разбить на 4 равные части, то отрезок х окажется состоящим из 14 отрезков, равных четвертой части отрезка е. И тогда, говоря о длине отрезка х, мы должны указать два числа 4 и 14: четвертая часть отрезка е укладывается в отрезке точно 14 раз. Поэтому условились длину отрезка х записывать в виде Е где Е- длина единичного отрезка е, а символ называть дробью. Определение. Пусть даны отрезок х и единичный отрезок е, длина которого Е. Если отрезок х состоит из т отрезков, равных п-ой части отрезка е, то длина отрезка х может быть представлена в виде Е, где символ — называют дробью (и читают «эм энных»). В записи дроби числа m и n - натуральные, m называется числителем, n - знаменателем дроби. Дробь называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателяилиравен ему. Вернемся к рисунку 1, где показано, что четвертая часть отрезка е уложилась в отрезке х точно 14 раз. Очевидно, это не единственный вариант выбора такой части отрезка е, которая укладывается в отрезке х целое число раз. Можно взять восьмую часть отрезка е, тогда отрезок х будет состоять из 28 таких частей и его длина будет выражаться дробью . Можно взять шестнадцатую часть отрезка е, тогда отрезок х будет состоять из 56 таких частей и его длина будет выражаться дробью Вообще длина одного и того же отрезка х при заданном единичном отрезке е может выражаться различными дробями, причем, если длина выражена дробью , то она может быть выражена и любой дробью вида , где k-натуральное число. Теорема. Для того чтобы дроби и выражали длину одного того же отрезка, необходимо и достаточно, чтобы выполнялось равенство тq = пр. Доказательство этой теоремымы опускаем. Определение. Две дроби и называются равными, если т q = пр. Если дроби равны, то пишут Например, , таккак 17×21 = 119×3, а потому что 17×27=459, 19×23 = 437 и 459 ¹ 437. Из сформулированных выше теоремы и определения следует, что две дроби равны тогда и только тогда, когда они выражают длину одного и того же отрезка. Нам известно, что отношение равенства дробей рефлексивно, симметрично и транзитивно, т.е. является отношением эквивалентности. Теперь, используя определение равных дробей, это можно доказать. Теорема.Равенство дробей является отношением эквивалентности. Доказательство. Действительно, равенство дробей рефлексив но: = ,так как равенство mn = nm справедливо для любых натуральных чисел n и m. Равенство дробей симметрично: если , то , так как из mq = nр следует, что рn = qm (m, n, р, qÎN). Оно транзитивно: если и , то . В самом деле, так как , то mq = nр, а так как , то рs = qr. Умножив обе части равенства mq = nр на s, а равенства рs = qr на n, получим mqs = nрs и nрs = qrs. Откуда mqs =qrn или ms = nr. Последнее равенство означает, что . Итак, равенство дробей рефлексивно, симметрично и транзитивно, следовательно, оно является отношением эквивалентности. Из определения равных дробей вытекает основное свойство дроби. Напомним его. Основное свойство дроби. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной. На этом свойстве основано сокращение дробей и приведение дробей к общему знаменателю. Сокращение дробей - это замена данной дроби другой, равной данной, но с меньшим числителем и знаменателем. Если числитель и знаменатель дроби одновременно делятся только на единицу,то дробь называют несократимой. Например, - несократимая дробь, так как ее числитель и знаменатель делятся одновременно только на единицу. Приведение дробей к общему знаменателю - это замена данных дробей равными им дробями, имеющими одинаковые знаменатели. Общим знаменателем двух дробей и является общее кратное чисел n и q, а наименьшим общим знаменателем - их наименьшее кратное К(n, q). Например. Привести к наименьшему общему знаменателю дроби и . Решение. Разложим числа 15 и 35 на простые множители: 15=3×5, 35=5×7. Тогда К(15,35)=3×5×7=105. Поскольку 105=15×7=35 ×3, то ,
Дата добавления: 2014-12-29; Просмотров: 1062; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |