Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Многоугольником называется простая замкнутая ломаная, если ее соседние звенья не лежат на одной прямой




Вершины ломаной называются вершинами многоугольника, а ее звенья - его сторонами. Отрезки, соединяющие несоседние вершины, называются диагоналями.

Любой многоугольник разделяет плоскость на две части, одна из которых называется внутренней, а другая - внешней областью многоугольника (или плоским многоугольником).

Различают выпуклые и невыпуклые многоугольники. Выпуклый многоугольник называется правильным, если у него все стороны и все углы равны.

Правильным является равносторонний треугольник, правильным четырехугольником - квадрат.

Углом выпуклого многоугольника при данной вершине называется угол, образуемый его сторонами, сходящимися в этой вершине.

Известно, что сумма углов выпуклого n-угольника равна 180°- (n - 2).

В геометрии, кроме выпуклых и невыпуклых многоугольников, рассматривают еще многоугольные фигуры.

Многоугольной фигурой называется объединение конечного множества многоугольников (рис. 9).

 

Многоугольники, из которых состоит многоугольная фигура, могут не иметь общих внутренних точек (рис.9,1,2); могут иметь общие внутренние точки (рис.9,3).

Говорят, что многоугольная фигура Р состоит из многоугольных фигур, если она является их объединением, а сами фигуры не имеют общих внутренних точек. Например, о многоугольных фигурах, изображенных на рисунке 9 можно сказать, что они состоят из двух многоугольных фигур или что они разбиты (каждая) на две многоугольные фигуры.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 706; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.