Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Часть 4. Системы человек-машина 1 страница




Прием информации оператором

Психофизиологическая характеристика процесса приема информации

4.1. Введение

Деятельность оператора по управлению (см. рис. 1.1) начинается с приема осведомительной информации об объекте управления. Основными психическими процессами, участвующими в приеме информации, являются ощущение, восприятие, представление и мышление. Анализ этих процессов, раскрытие их природы и закономерностей необходимы для решения задачи оптимального построения информационной модели реальной обстановки.

Прием информации человеком-оператором необходимо рассматривать как процесс формирования перцептивного (чувственного) образа. Под ним понимается субъективное отражение в сознании человека свойств действующего на него объекта. Исследования, проведенные в психологии, показывают, что формирование перцептивного образа является фазным процессом. Оно включает несколько стадий: обнаружение, опознание и различение.

Обнаружение – стадия восприятия, на которой наблюдатель выделяет объект из фона, но еще не может судить о его форме и признаках.

Различение – стадия восприятия, на которой наблюдатель способен раздельно воспринимать два объекта, расположенных рядом (либо два состояния одного объекта), выделять детали объектов.

Опознание – стадия восприятия, на которой наблюдатель выделяет существенные признаки объекта и относит его к определенному классу.

Длительность этих стадий зависит от сложности воспринимаемого сигнала. Знание последовательности различения признаков сигнала и динамики становления его образа важно для решения таких инженерно-психологических задач как выбор оптимального начертания знаков, определение числа строк в телевизионном изображении, скорости передачи сигналов и смены кадров в проекционных системах отображения и т. п. В этой связи возникает также проблема «помехоустойчивости» восприятия, т. е. возможности человека восстанавливать сигналы, частично разрушенные помехами.

Большую роль при построении перцептивного образа играют представления (вторичные образы), сформированные у человека в процессе развития. Акт восприятия есть вместе с тем и соотнесение формирующегося образа с некоторым хранящимся в памяти эталоном. Для представления характерна схематизация образа и элементарный уровень обобщения. Система представлений, хранящихся в памяти человека, образует своеобразную «субъективную шкалу», с которой соотносятся те или иные перцептивные образы. Это значительно ускоряет процесс восприятия, но вместе с тем иногда может служить источником ошибок опознания.

Процесс опознания происходит путем последовательного «разворачивания» сложных признаков. Когда в поле зрения находится несколько объектов, их опознание начинается почти одновременно. Однако пока один из них не будет опознан с вероятностью порядка 70%, опознание остальных задерживается. Вопрос о формировании «субъективных шкал» и их использовании в актах восприятия сигналов нуждается в дальнейшем изучении, результаты которого могли бы быть весьма полезны для разработки систем оптимального кодирования информации и принципов обучения операторов.

Восприятие как основа процесса приема информации оператором характеризуется такими свойствами, как целостность, осмысленность, избирательность, константность. Целостность восприятия возникает в результате анализа и синтеза комплексных раздражителей в процессе деятельности оператора. Осмысленность состоит в том, что воспринимаемый объект относится к определенной категории.

Восприятие обладает также избирательностью, которая заключается в преимущественном выделении одних объектов по сравнению с другими. Избирательность восприятия является выражением определенного отношения оператора к воздействию на него предметов и явлений внешней среды.

Константностью восприятия называется относительное постоянство некоторых воспринимаемых свойств предметов при изменении условий восприятия. Например, при зрительном восприятии имеет место константность цвета, величины и формы предметов. Константность восприятия цвета заключается в относительной неизменности видимого цвета при изменении освещения. Относительное постоянство видимой величины предметов при их различной удаленности называется константностью восприятия величины. Константность восприятия формы предметов заключается в относительной неизменности восприятия формы предмета при изменении положения его по отношению к линии взора оператора. Константное восприятие связано с восприятием предмета или предметной ситуации как единого целого.

Перечисленные свойства восприятия представляют определенный интерес в плане инженерной психологии в том смысле, что они не являются изначальными свойствами перцептивного образа и формируются в процессе его становления. Этот факт имеет большое значение для правильного построения средств отображения информации, для организации профессионального отбора и обучения операторов.

Физиологическая основа формирования перцептивного образа является работа анализаторов. Анализаторами называются нервные приборы, посредством которых человек осуществляет анализ раздражений. Любой анализатор состоит из трех основных частей: рецептора, проводящих нервных путей и центра в коре больших полушарий головного мозга (рис. 3.1).

 

Основной функцией рецептора является превращение энергии действующего раздражителя в нервный процесс. Вход рецептора приспособлен к приему сигналов определенной модальности (вида)– световых, звуковых и др. Однако его выход посылает сигналы, по своей природе единые для любого, входа нервной системы. Это позволяет рассматривать рецепторы как устройства кодирования информации.

Проводящие нервные пути осуществляют передачу нервных импульсов в кору головного мозга. Эти импульсы, достигнув коры головного мозга, подвергаются там определенной обработке и снова возвращаются в рецепторы. Только в этом процессе взаимодействия рецепторов и центров в коре больших полушарий происходит формирование перцептивного образа.

В зависимости от модальности поступающего сигнала различают виды анализаторов. Наибольшее значение для деятельности оператора имеют зрительный анализатор, за ним следуют слуховой и тактильный (осязательный) анализаторы. Участие других анализаторов в деятельности оператора невелико.

Основными характеристиками любого анализатора являются пороги – абсолютный (верхний и нижний), дифференциальный и оперативный. Понятие каждого из этих порогов может быть введено по отношению к энергетическим (интенсивность), пространственным (размер) и временным (продолжительность воздействия) характеристикам сигнала.

Минимальная величина раздражителя, вызывающая едва заметное ощущение, носит название нижнего абсолютного порога чувствительности, а максимально допустимая величина – название верхнего порога чувствительности (это понятие вводится по отношению лишь к энергетическим характеристикам). Сигналы, величина которых меньше нижнего порога, человеком не воспринимаются. Увеличение же интенсивности сигнала сверх верхнего порога вызывает у человека болевое ощущение (сверхгромкий звук, слепящая яркость и т. д.). Интервал между нижним и верхним порогами носит название диапазона чувствительности анализатора. Примерные значения основных характеристик различных анализаторов приводятся в табл. 3.1.

 

С помощью анализаторов человек может не только ощущать тот или иной сигнал, но и различать сигналы. Для характеристики различения вводится понятие дифференциального порога (от лат. differentia – различать), под которым понимается минимальное различие между двумя раздражителями (сигналами), либо между двумя состояниями одного раздражителя, вызывающее едва заметное различие ощущений. Экспериментально установлено, что величина дифференциального порога пропорциональна исходной величине раздражителя;

(3.1)

где J – исходная величина сигнала (раздражителя): dJ – величина дифференциального порога: k – константа, равная 0,01 для зрительного анализатора, 0,10–для слухового и 0,30–для тактильного.

На основании данного выражения может быть установлена зависимость между величиной сигнала и величиной вызываемого им ощущения:

 

(3.2)

где s – величина ощущения: k и С – константы.

Данная зависимость (3.2) носит название основного психофизического закона, или закона Вебера – Фехнера. Согласно этому закону, интенсивность ощущения прямо пропорциональна логарифму силы раздражителя. Закон справедлив только для среднего участка диапазона чувствительности анализатора.

Понятие дифференциального порога имеет большое значение в психофизике и экспериментальной психологии. Однако оно является явно не достаточным для инженерной психологии. Дело в том, что величина дифференциального порога характеризует предельные возможности анализатора и поэтому не может служить основанием для выбора допустимой длины алфавита сигналов. Для этого необходимо пользоваться другой величиной – в инженерной психологии это оперативный порог различения. Он определяется той наименьшей величиной различия между сигналами, при которой точность и скорость различения достигают максимума. Обычно оперативный порог различения в 10–15 раз больше дифференциального.

Сказанное иллюстрируется рис. 3.2, где по оси ординат отложена величина скорости приема информации, а по оси абсцисс – величина

(3.3)

где ∆J – величина различия между двумя сигналами.

Из рисунка следует, что при Q = 10÷15 скорость приема информации достигает максимума и при дальнейшем увеличении ∆J практически не меняется.

Важнейшими свойствами анализаторов, имеющими, большое значение для деятельности оператора, являются адаптивность и избирательность.

Анализатор является самонастраивающейся системой. Это его свойство проявляется в адаптации, т.е. в изменении диапазона чувствительности в соответствии с условиями работы анализатора. В процессе адаптации изменяются как энергетический, так и временной и пространственный пороги анализаторов. Адаптация характеризуется величиной изменения чувствительности и временем, в течение которого она осуществляется. Эти показатели различны для разных анализаторов. Так, например, тактильный анализатор адаптируется наиболее быстро, зрительный – сравнительно медленно, однако диапазон изменения чувствительности у него очень большой.

Избирательность анализатора заключается в его способности из множества раздражителей, действующих на человека, в каждый момент времени в зависимости от условий выделять лишь определенные. Избирательность является условием формирования адекватных ощущений и обеспечивает высокую помехоустойчивость анализаторов. Избирательность может быть амплитудной, пространственной, временной и вероятностной. Последнее означает дублирование сигналов, передаваемых в мозговой центр, за счет движения воспринимающих аппаратов и бирецепции.

Рассмотренные характеристики и устройство анализаторов позволяют сформулировать общие требования к сигналам-раздражителям, адресованным оператору:

интенсивность сигналов должна соответствовать средним значениям диапазона чувствительности анализаторов, которая обеспечивает наиболее оптимальные условия для приема и переработки информации;

для того чтобы оператор мог следить за изменением сигналов, сравнивать их между собой по интенсивности, длительности, пространственному положению, необходимо обеспечить различие между сигналами, превышающее оперативный порог различения;

перепады между сигналами не должны значительно превышать оперативный порог, так как при больших перепадах возникает утомление; следовательно, существуют не только оптимальные пороги, но и оптимальные зоны, в которых различение сигналов осуществляется с наибольшей скоростью и точностью;

наиболее важные и ответственные сигналы следует располагать в тех зонах сенсорного поля, которые соответствуют участкам рецепторной поверхности с наибольшей чувствительностью;

при конструировании индикаторных устройств необходимо правильно выбрать вид сигнала, а следовательно, и модальность анализатора (зрительный, слуховой, тактильный и т. д.).

Энергетические и информационные характеристики зрительного анализатора

 

Раздражителем зрительного анализатора является световая энергия, а рецептором – глаз. Зрение позволяет воспринимать форму, цвет, яркость и движение предметов. Человек-оператор около 90% всей информации получает через зрительный анализатор.

Глаз человека работает по принципу фотографической камеры, роль объектива в которой выполняет хрусталик. Световые лучи, проходя через хрусталик, преломляются и создают уменьшенное обратное изображение на внутренней стенке глазного яблока (сетчатке). На сетчатке находятся светочувствительные нервные окончания (рецепторы), которые носят название палочек и колбочек. Рецепторы поглощают падающий на них световой поток и преобразуют его в нервные импульсы, которые передаются по зрительному нерву в мозг. Величина этих импульсов зависит от освещенности сетчатки на том ее участке, на котором получается изображение рассматриваемого предмета.

Возможность зрительного восприятия определяется энергетическими, пространственными, временными и информационными характеристиками сигналов, поступающих к оператору. Совокупность этих характеристик и их численные значения определяют видимость объекта (сигнала) для глаза. В соответствии с названными характеристиками сигналов целесообразно рассмотреть четыре группы характеристик зрительного анализатора (рис. 3.3)

Энергетические характеристики зрительного анализатора определяются мощностью (интенсивностью) световых сигналов, воспринимаемых глазом. К ним относятся: диапазон яркостей, воспринимаемых глазом, контраст, цветоощущение.

Световой поток, излучаемый источником или отражаемый светящейся поверхностью, попадая в глаз наблюдателя, вызывает зрительное ощущение. Оно будет тем сильнее, чем больше плотность светового потока, излучаемого или отражаемого по направлению к глазу. Следовательно, источник света или освещенный предмет будет тем лучше виден, чем большую силу света излучает каждый элемент поверхности в направлении глаза. Яркостью предмета называется величина

(3.4)

где J – сила света, т. е. световой поток, излучаемый на единицу телесного угла; S – величина светящейся поверхности; α – угол, под которым рассматривается поверхность.

Единицей яркости является кандела на 1 кв. м (кд/м2). Яркостью в 1кд/м2 обладает равномерно светящаяся плоская поверхность, излучающая в перпендикулярном к ней направлении свет силой 1 кл на каждый квадр. метр. Яркость является основной характеристикой света. Величиной яркости определяется величина нервных импульсов, возникающих в сетчатке глаза.

В общем случае яркость предмета определяется двумя составляющими – яркостью излучения и яркостью за счет внешней засветки (яркостью отражения):

(3.5)

Яркость излучения определяется мощностью источника света, и его светоотдачей. Вторая же составляющая формулы определяется уровнем освещенности данной поверхности и ее отражающими свойствами:

(3.6)

где Е – освещенность поверхности, лк; ρ – коэффициент отражения поверхности.

Коэффициент отражения во многом определяется цветом поверхности (табл. 3.2). Он показывает, какая часть падающего на поверхность светового потока отражается ею.

Так как в поле зрения оператора могут попадать предметы с различной яркостью, в инженерной психологии вводится также понятие адаптирующей яркости. Под ней понимают ту яркость, им которую адаптирован (настроен) в данный момент времени зрительный анализатор. Приближенно можно считать, что для изображений с прямым контрастом (см. ниже) адаптирующая яркость равна яркости фона, а для изображений с обратным контрастом – яркости предмета.

Диапазон чувствительности зрительного анализатора весьма велик: он простирается от 10-6 до10 нит. Наилучшие же условия для работы будут при уровнях адаптирующей яркости, лежащей в пределах от нескольких десятков до нескольких сотен нит. Об этом, в частности, свидетельствует рис. 3.4, на котором приведена зависимость числа ошибок и перевернутых букв (в процентах от общего числа выполненных операций) в работе наборщиков типографий от яркости шрифта. Из рисунка видно, что при Ва < 8 нит число ошибок резко возрастает.

Видимость предметов определяется также контрастом их по отношению к фону. Различают два вида контраста: прямой (предмет темнее фона) и обратный (предмет ярче фона). Количественно величина контраста оценивается как отношение разности в яркости предмета и фона к большей яркости:

, (3.7)

где Вф и Вп – соответственно яркость фона и предмета.

Оптимальная величина контраста считается равной 0,60÷0,95. Работа при прямом контрасте является более благоприятной, чем работа при обратном контрасте.

Однако обеспечение требуемой величины контраста является только необходимым, по еще недостаточным условием нормальной видимости предметов. Нужно также знать, как этот контраст воспринимается в данных условиях. Для его оценки вводится понятие порогового контраста, который равен

(3.8)

где dBпор – пороговая разность яркости, т. е. минимальная разность яркости предмета и фона, впервые обнаруживаемая глазом.

Величина Кпор определяется дифференциальным порогом различения. Для получения оперативного порога необходимо, чтобы фактическая величина разности яркости предмета и фона была в 10–15 раз больше пороговой. Это означает также, что для нормальной видимости величина контраста, рассчитанная по формулам (3.7), должна быть больше Кпор в 10–15 раз.

Величина порогового контраста зависит от яркости и размеров предметов (рис. 3.5). Из рисунка видно, что предметы с большими размерами видны при меньших контрастах и что с увеличением яркости уменьшается значение порогового контраста.

Большое влияние на условия видимости предметов оказывает величина внешней освещенности. Однако это влияние будет различным при работе оператора с изображениями, имеющими прямой и обратный контраст. Увеличение освещенности при прямом контрасте приводит к увеличению условий видимости (величина Кпр увеличивается), при обратном – к ухудшению видимости (величина Коб уменьшается). Эти явления можно проследить при анализе формул (3.7). При увеличении освещенности величина Кпр увеличивается, поскольку яркость фона возрастает больше, чем яркость предмета (коэффициент отражения фона больше коэффициента отражения предмета). Величина Коб при этом уменьшается, так как яркость предмета практически не меняется (предмет светится), а яркость фона увеличивается.

В ряде случаев в поле зрения оператора могут быть сигналы разной интенсивности. При этом сигналы с большей яркостью могут вызвать нежелательное состояние глаз – ослепленность. Слепящая яркость определяется размером светящейся поверхности и яркостью сигнала, а также уровнем адаптации глаза.

(3.9)

где ω – телесный угол, под которым оператору видна светящаяся поверхность (в стерадианах).

Следовательно, для создания оптимальных условий зрительного восприятия необходимо не только обеспечить требуемую яркость и контраст сигналов, но также и равномерность распределения яркостей в поле зрения. В случаях, когда невозможно использовать для расчетов формулу (3.9), можно пользоваться данными табл. 3.3 или же необходимо обеспечить перепады яркостей не более 1 к 30.

Глаз человека воспринимает электромагнитные волны в диапазоне 380–760 нм. Однако чувствительность глаза к волнам различной длины неодинакова. Наибольшую чувствительность глаз имеет по отношению к волнам в середине спектра видимого света (500– 600 нм). Этот диапазон соответствует излучению желто-зеленого цвета. Важной характеристикой глаза является относительная видность

(3.10)

где s – ощущение, вызываемое источником излучения длиной 550 нм; sλ – ощущение, вызываемое источником той же мощности длиной λ.

Кривая относительной видности приведена на рис. 3.7. Из рисунка, например, видно, что для обеспечения одинакового зрительного ощущения необходимо, чтобы мощность синего излучения была в 16,6, а красного – в 9,3 раза больше мощности желто-зеленого излучения. По этой причине цветоощущение (относительная видность) условно также может быть отнесено к энергетическим характеристикам зрительного анализатора.

Влияние цвета в деятельности оператора очень велико. Во-первых, он может использоваться как один из способов кодирования информации, во-вторых, – для эстетического оформления помещений и пультов управления с точки зрения улучшения зрительного восприятия.

Основной информационной характеристикой зрительного анализатора является пропускная способность, т. е. то количество информации, которое способен анализатор принять в единицу времени. Зрительный анализатор можно представить в виде канала связи, состоящего из нескольких участков передачи информации. Очевидно, пропускная способность канала в целом будет определяться пропускной способностью того участка, для которого она минимальна.

Наибольшая пропускная способность (~5,6·109 дв. ед./сек) имеет место на уровне фоторецепторов (сетчатки). По мере продвижения к более высоким уровням приема информации пропускная способность уменьшается, составляя на корковом уровне лишь 20–70 дв. ед./сек. Еще меньше пропускная способность для деятельности в целом (с учетом ответных действий человека). Здесь она составляет 2÷4 дв. ед./сек.

Приведенные данные позволяют представить зрительный анализатор в виде информационной «воронки», широкая часть которой соответствует сетчатке, а узкая – зрительной области коры головного мозга (рис. 3.8).

В подобном принципе работы зрительной системы заложен глубокий биологический смысл – информационная «воронка» повышает надежность линии передачи и резко сокращает вероятность посылки в мозг ошибочного сигнала. Благодаря этому сообщения, характеризующиеся в нижних отделах зрительного анализатора значительной статистической избыточностью, по мере передачи в вышележащие этажи принимают все более и более экономную форму.

 

Пространственные и временные характеристики зрительного анализатора

 

Пространственные характеристики зрительного анализатора определяются воспринимаемыми глазом размерами предметов и их месторасположением в пространстве. К ним относятся: острота зрения, поле зрения и объем зрительного восприятия.

Остротой зрения называется способность глаза различать мелкие детали предметов. Она определяется величиной, обратной тому минимальному размеру предмета, при котором он различим глазом. Угол зрения, равный 1º, соответствует единицы остроты зрения. Острота зрения зависит от уровня освещенности, расстояния до рассматриваемого предмета и его положения относительно наблюдателя, возраста. Так, например, острота зрения под углом 10º в 10 раз меньше, а под углом 30º в 23 раза меньше, чем прямо перед собой.

Размеры предметов выражаются в угловых величинах, которые связаны с линейными размерами (рис.3.9) следующими отношениями:

(3.11)

где h и α – соответственно линейный и угловой размеры предмета; l – расстояние от глаза до предмета.

Острота зрения характеризует абсолютный пространственный порог восприятия. Минимально же допустимые размеры изображения, предъявляемого оператору, должны быть на уровне оперативного порога и составлять не менее 15°. Однако это справедливо только для предметов простой формы. Для сложных предметов, опознавание которых ведется не только по внешним и внутренним признакам, оптимальные условия восприятия будут в том случае, если их размеры составляют не менее 30–40°. Эта величина принимается в инженерной психологии в качестве рекомендуемого размера отдельных знаков и элементов изображения.

Важной характеристикой зрительного восприятия является его объем: число объектов, которые может охватить человек в течение одной зрительной фиксации, т. е. при симультанном восприятии. Обнаружено, что при предъявлении не связанных между собой объектов объем восприятия составляет 4–8 элементов. Последние исследования показывают, что объем воспроизведенного материала определяется не столько объемом восприятия, сколько объемом памяти. В зрительном образе может отражаться значительно большее число объектов, однако они не могут быть воспроизведены из-за ограниченного объема памяти. Следовательно, практически важно учитывать не столько объем восприятия, сколько объем памяти.

Условно все поле зрения можно разбить на три зоны: центрального зрения (~4°), где возможно наиболее четкое различение деталей; ясного видения (30–35°), где при неподвижном глазе можно опознать предмет без различных мелких деталей; периферического зрения (75–90°), где предметы обнаруживаются, но не опознаются. Зона периферического зрения играет большую роль при ориентации во внешней обстановке. Объекты, находящиеся в этой зоне, легко и быстро могут быть перемещены в зону ясного видения с помощью установочных движений (скачков) глаз.

Большую роль в процессе зрительного восприятия играют движения глаз. Они делятся на два больших класса: поисковые (установочные) и гностические (познавательные).

С помощью поисковых движений осуществляется поиск заданного объекта, установка глаза в исходную позицию и корректировка этой позиции. Длительность поисковых движений определяется углом, на который перемещается взор.

(3.12)

где β – угол перемещения взора, град; tп – время перемещения взора, сек.

К гностическим относятся движения, участвующие в обследовании объекта, его опознании и различении его деталей. Основную информацию глаз получает во время фиксации, т. е. во время относительно неподвижного положения глаза, когда взор пристально устремлен на объект. Во время скачка глаз почти не получает никакой информации. Если продолжительность скачка в среднем составляет 0,025 сек, то продолжительность фиксации в зависимости от условий восприятия 0,25–0,65 сек и более. Результаты исследований показывают, что общее время фиксаций составляет 90–95% от времени зрительного восприятия.

Фиксации неотделимы от микродвижений глаз. В ряде опытов при помощи специального устройства изображение объекта стабилизировалось относительно сетчатки глаза, т. е. изображение не перемещалось по сетчатке. Уже через 2–3 сек после стабилизации человек переставал видеть объект. Следовательно, движения являются необходимым условием зрительного восприятия.

Временные характеристики зрительного анализатора определяется временем, необходимым для возникновения зрительного ощущения при тех или иных условиях работы оператора. К ним относятся: латентный (скрытый) период зрительной реакции, длительность инерции ощущения, критическая частота мельканий, время адаптации, длительность информационного поиска.

Латентным периодом называется промежуток времени от момента подачи сигнала до момента возникновения ощущения. Это время зависит от интенсивности сигнала (так называемый закон силы: чем сильнее раздражитель, тем реакция на него короче), его значимости (реакция на значимый для оператора сигнал короче, чем сигналы, не имеющие значения для оператора), сложности работы оператора (чем сложнее выбор нужного сигнала среди остальных, тем реакция на него будет больше), возраста и других индивидуальных особенностей человека. В среднем же для большинства людей латентный период зрительной реакции лежит в пределах 160-240 мсек.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 609; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.064 сек.