КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основные направления развития методов обработки и хранения данных
Современные корпоративные системы могут быть представлены в виде нескольких информационных слоев (рис. 7.1). Первым слоем являются детальные данные, полученные в результате функционирования систем, ориентированных на операционную обработку данных (финансовые, кадровые и др.) в режиме реального времени (OLTP, On-Line Transactional Processing – системы оперативной обработки данных). Современные OLTP-системы реализованы, как правило, на основе реляционных баз данных, хотя возможны и другие решения. Они выступают источником данных, на которых строится второй слой – хранилище данных (Data Warehouse). Хранилище данных представляет единую среду для хранения корпоративных данных, в которой данные преобразованы и структурированы в виде, удобном для выполнения аналитики. Аналитические возможности информационных систем, относящиеся к классу систем поддержки принятия решений, ориентированы на выполнение таких задач, как ведение отчетности, анализ данных в реальном режиме времени и интеллектуального анализа данных. Среди систем поддержки принятия решений выделяют два основных типа - EIS (Execution Information System) и DSS (Desktop Support System). EIS-системы рассчитаны на рядовых пользователей, имеют упрощенный интерфейс и располагают базовым набором возможностей и фиксированными формами представления информации. Системы класса DSS (Decision Support System) – это полнофункциональные системы анализа, рассчитанные на подготовленных пользователей как в предметной области так и в области информационных технологий. Такое деление систем является условным и в большинстве случаев системы ESD и SDD могут функционировать параллельно, предоставляя аналитическую информацию руководителям предприятий и данные для аналитических отделов. Рис. 7.1 Структура систем поддержки принятия решений Представленная структура системы принятия решения позволяет выделить в ней две основные части: хранилище данных и средства аналитической обработки данных. К функции аналитической обработки данных руководителями компаний проявляется все больший интерес. Остановимся на них несколько подробнее. Формирование отчетности – наиболее активно используемый инструмент в технологиях анализа данных позволяет автоматизировать процесс подготовки отчетов, справок, документов, сводных таблиц и т. д. Системы регламентированной отчетности могут содержать дополнительные утилиты, обеспечивающие авторизацию пользователей, контроль над выполнением отчетов, автоматическую установку времени формирования отчета. OLAP-системы (On-Line Analytical Processing) представляют инструмент для анализа больших объемов данных в режиме реального времени. Взаимодействуя с OLAP-системой, пользователь может осуществлять гибкий просмотр информации, получать произвольные срезы данных и выполнять аналитические операции детализации, свертки, сравнения во времени. Если системы регламентированной отчетности позволяют ответить на вопрос «Какова прибыль предприятия за последний месяц?», то OLAP-системы дают ответ на «На сколько следует увеличить расходы на рекламу, чтобы прибыль компании возросла на 15%?»
Интеллектуальный анализ данных или извлечение данных (Data Mining) –позволяют проводить более глубокие исследования данных. Эти исследования включают в себя поиск закономерностей и зависимостей между данными. С точки зрения маркетинга важно выявление закономерностей типа ассоциация, которое позволяет, например, на основе исследований в супермаркете показать, что 65% клиентов, купивших чипсы, приобретают и «кока-колу». Если существует цепочка связанных во времени событий, то методы интеллектуального анализа выявляют закономерность типа последовательность. Так, например, приобретение новой кухни в 45% случаев приводит к покупкам новой посуды. Выявление закономерностей типа классификация или кластеризация позволяют определить признаки, характеризующие группу, к которой принадлежит тот или иной исследуемый объект или выделить однородные группы из данных. Этот анализ важен при выборе и оценке целевой аудитории. В основе Data Mining лежит математический аппарат, возникший и развивающийся на базе достижений прикладной статистики, распознавания образов, методов искусственного интеллекта, теории баз данных и т.д. Наличие различных методов и алгоритмов, на которых базируются современные системы Data Mining, привели к их многообразию. Некоторые системы интегрируют в себе сразу несколько подходов, хотя, как правило, в каждой системе есть свой ключевой компонент[44]:
Однако, обработка оперативных данных, хранение и аналитическая обработка информации не означают увеличения корпоративного знания как высокоструктурированной (классифицированной, с выявленными логическими, семантическими и ассоциативными связями) информации. В этой связи практическую значимость для бизнеса имеет управление знаниями (KM, Кnowledge Management) как совокупность стратегических и оперативных усилий, направленных на увеличение и повышение эффективности использования интеллектуального капитала организации. Процесс управления знаниями можно рассматривать с нескольких позиций – с точки зрения инновационного менеджмента, экономики, образования, психологии, социологии и т.д. Ограничим рассмотрение этой проблемы позициями маркетинга и теорией информационных систем. В структуре интеллектуального капитала согласно классификации, предложенной основоположником современной теории интеллектуального капитала Т.Стюртом[45], выделяют человеческий, организационный и потребительский капиталы (рис.7.2). Элементы интеллектуального капитала могут быть соотнесены с индивидуальной компетенцией сотрудников, внутренней и внешней структурами компании соответственно, и являются взаимосвязанными. В такой структуре стратегии управления знаниями, учитывающие все взаимосвязи, должны быть направленные на повышение эффективности формирования и использования каждого из элементов интеллектуального капитала и поддерживаться современными корпоративными информационными системами. Рис. 7.2 Структура интеллектуального капитала Основные функции по управлению знаниями можно сформулировать как: - Поиск источников знаний. - Освоение источников знаний. - Накопление знаний. - Создание знаний. - Запись и хранение знаний. - Распространение знаний. - Обучение организации. - Использование знаний. Даже поверхностный анализ этих функций и структуры интеллектуального капитала показывает, что управление знаниями - проблема чрезвычайно сложная. Это предопределило появление большого класса программных продуктов, каждый из которых ориентируются на решение некоторого подкласса задач и базируются на технологиях, поддерживающих управление знаниями: - системы поддержки принятия решений; - системы управления документооборотом (Document management) — хранение, архивирование, индексирование, разметка и публикация документов; - средства для организации совместной работы (Collaboration) — сети Интранет, технологии группой работы, синхронные и асинхронные конференции; - корпоративные порталы и т. д. Все эти технологии - новый виток в развитии средств и методов обработки и хранения данных, широкое применение которых наступит уже в ближайшие годы. Сегодня службы маркетинга российских компаний уже могут ответить на вопросы «Какие физические или юридические лица покупают продукты компании?» или «Какая комбинация инструментов продвижения рекламы наиболее эффективна с точки зрения минимизации бюджета рекламной компании?». Однако для получения ответа на вопрос «Почему фактические результаты маркетингового плана отличаются от теоретических и что нужно сделать для эффективного использования новых возможностей при минимизации рисков?» - на эти и другие аналогичные вопросы можно ответить, только изменив технологии реализации маркетинговой деятельности.
Дата добавления: 2014-12-29; Просмотров: 1604; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |