КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пуассоновское распределение (дискретное)
Биномиальное распределение (дискретное) III. Распределения случайных величин Формулы по теории вероятности В данном разделе: формулы по теории вероятностей онлайн. Полный список разделов: · Часть 1. Случайные события · Часть 2. Случайные величины · Часть 3. Распределения случайных величин · Часть 4. Другие формулы
- количество «успехов» в последовательности из независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них равна . .
Закон распределения имеет вид:
Здесь вероятности находятся по формуле Бернулли: . Характеристики: , ,
Примеры многоугольников распределения для и различных вероятностей:
Распределение Пуассона моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга. При условии закон распределения Пуассона является предельным случаем биномиального закона. Так как при этом вероятность события A в каждом испытании мала, то закон распределения Пуассона называют часто законом редких явлений.
Ряд распределения:
Вероятности вычисляются по формуле Пуассона: . Числовые характеристики: , ,
Разные многоугольники распределения при .
Дата добавления: 2015-01-03; Просмотров: 494; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |