КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Анализ заданной в определенном функциональном базисе логической схемы
Вариант исходной логической схемы образуется заданием функционального базиса логических функций, размещением логических элементов в сетке мест графического изображения логической схемы, списком связей входов и выходов логических элементов. Номер варианта заданного функционального базиса логических функций {№Ф-ции1,№Ф-ции2,№Ф-ции3} из таблицы 6, обозначаемый как «№Базиса», получается следующим образом: «№Базиса»=(«№Зачетки»%8)+1 где % - операция получения целочисленного остатка от деления. «№Базиса»=(9%8)+1=2, т.е. из таблицы 6 следует, что {№Ф-ции1,№Ф-ции2,№Ф-ции3}={2,9,14} Графическое изображение логической схемы содержит пятнадцать мест для размещения (три ряда по пять элементов) логических элементов, реализующих логические функции базиса. Элементы пронумерованы с 5 по 19 включительно, номера с 1 по 4 принадлежат входам логической схемы, а номер 20 приписан выходу всей схемы. Номер варианта размещения логических элементов в сетке мест графического изображения логической схемы из таблицы 7, обозначаемый как «№Размещения» получается следующим образом:
«№Размещения»=(«№Зачетки»%3)+1 где % - операция получения целочисленного остатка от деления. «№Размещения»=(9%3)+1=1, т.е из таблицы 7 получаем следующее расположение для базиса {№Ф-ции1,№Ф-ции2,№Ф-ции3}={4,6,8 }:
Номер варианта списка связей входов и выходов логических элементов логической схемы обозначаемый как «№Связей» получается следующим образом: «№Связей»=(«№Зачетки»%13)+1 где % - операция получения целочисленного остатка от деления. «№Связей»=(9%13)+1=10 В списке связей для каждого логического элемента указаны номера логических элементов, выходы которых соединены с его входами. Для данного варианта список связей выглядит следующим образом: 5(1,2); 6(1,2); 7(3,4,6); 8(5,6,7); 9(4,6); 10(4,7); 11(1,8,10); 12(1,9); 13(9,10); 14(9,11); 15(10,12,14); 16(10,13); 17(11,14); 18(15,17); 19(16,18); 20(18). Полученная схема приведена ниже:
Анализ схемы. Анализ схемы выполняется путем поэтапной подстановки выражений для реализации y y5=x1~ x2=ùx1ùx2+x1x2 y6=x1/x2=ùx1+ùx2 y7=x3ù→x4ù→y6=(x3ùx4) ù→y6=x3x4x1x2=x1x2x3x4
y8=y5~y6~y7=((x1+x2)(ùx1+ùx2)x1x2+(ùx1ùx2+x1x2)(ùx1+ùx2)) ~y7= =(ùx1ùx2) ~y7=(x1+x2)(ùx1+ùx2+ùx3+ùx4)+(ùx1ùx2)x1x2x3x4=x1ùx2+x1ùx3+ +x1ùx4+ùx1x2+x2ùx3+x2ùx4 y9=x4/y6 =ùx4+x1x2 y10=x4ù→y7=x4(ùx1+ùx2+ùx3+ùx4)= ùx1x4+ùx2x4+ùx3x4 y11=x1~y8~y10=(ùx1(ùx1+x2)(ùx1+x3)(ùx1+x4)(x1+ùx2)(ùx2+x3)(ùx2+x4)+ +x1(x1ùx2+x1ùx3+x1ùx4+ùx1x2+x2ùx3+x2ùx4)) ~y10=((ùx1+ùx1x2) (ùx1+x3) (ùx1+x4)(x1+ùx2)(ùx2+x3)(ùx2+x4)+(x1ùx2+x1ùx3+x1ùx4+x1x2ùx3+x1x2ùx4)) ~y10=(ùx1ùx2(ùx1+x3)(ùx2+x3)(ùx2+x4)(ùx1+x4)+ (x1ùx2+x1ùx3+x1ùx4+ +x1x2ùx3+x1x2ùx4)) ~y10=((ùx1ùx2+ùx1ùx2x3) (ùx2+x3)(ùx2+x4)(ùx1+x4)+ +(x1ùx2+x1ùx3+x1ùx4+ +x1x2ùx3+x1x2ùx4)) ~y10=((ùx1ùx2+ùx1ùx2x3) (ùx2+x4)(ùx1+x4)+ (x1ùx2+x1ùx3+x1ùx4+ x1x2ùx3+x1x2ùx4)) ~y10= =((ùx1ùx2+ùx1ùx2x4+ùx1ùx2x3+ùx1ùx2x3x4)(ùx1+x4)+(x1ùx2+x1ùx3+ + x1ùx4+ x1x2ùx3+x1x2ùx4)) ~y10=(ùx1ùx2+ùx1ùx2x4+ùx1ùx2x3x4+ + x1ùx2+x1ùx3+ x1ùx4+ x1x2ùx3+x1x2ùx4)~y10=(ùx1ùx2+x1ùx2+x1ùx3+ +x1ùx4+x1x2ùx3+x1x2ùx4) ~y10=(ùx2+x1ùx3+x1ùx4+x1x2ùx3+x1x2ùx4) ~y10= =(ùx2+x1ùx3+x1ùx4)~y10=x2(ùx1+x3)(ùx1+x4)(x1+ùx4)(x2+ùx4)(x3+ùx4)+ +(ùx2+x1ùx3+x1ùx4)(ùx1x4+ùx2x4+ùx3x4)=x2(ùx1+x3)(ùx1ùx4+x1x4) (x2+ùx4)(x3+ùx4) +(ùx2+x1ùx3+x1ùx4)(ùx1x4+ùx2x4+ùx3x4)= =x2(ùx1+x3)(ùx1x2ùx4+x1x2x4+ùx1ùx4)(x3+ùx4) +(ùx2+x1ùx3+x1ùx4) (ùx1x4+ùx2x4+ùx3x4)=x2(ùx1+x3)(ùx1x2x3ùx4+x1x2x3x4+ùx1x2x4+ +ùx1x2ùx4) +(ùx2+x1ùx3+x1ùx4)(ùx1x4+ùx2x4+ùx3x4)=(ùx1+x3)(ùx1x2x4+ +x1x2x3x4+ùx1x2x3x4) +(ùx2+x1ùx3+x1ùx4)(ùx1x4+ùx2x4+ùx3x4)= =(ùx1+x3) (ùx1x2x4+x1x2x3x4) +(ùx2+x1ùx3+x1ùx4)(ùx1x4+ùx2x4+ùx3x4)= =ùx1x2x4+ùx1x2x3x4+x1x2x3x4+ùx1ùx2x4+ùx2x4+ùx2ùx3x4+x1ùx2ùx3x4+ +x1ùx3x4=ùx1x2x3+x1x2x3x4+ùx2x4+x1ùx3x4 y12=x1/y9 =ùx1+x4(ùx1+ùx2)= ùx1+ùx1x4+ùx2x4=x1+ùx2x4 y13= y9ù→y10=(ùx4+x1x2)(x1+ùx4)(x2+ùx4)(x3+ùx4)=(x1ùx4+ùx4+x1x2+ +x1x2ùx4)(x2+ùx4)(x3+ùx4)=(ùx4+x1x2)(x2+ùx4)(x3+ùx4)=(x2ùx4+ùx4+ +x1x2+x1x2ùx4)(x3+ùx4)=(ùx4+x1x2)(x3+ùx4)=x3ùx4+ùx4+x1x2x3+ +x1x2ùx4=ùx4+x1x2x3 y14=y9~y11 =x4(ùx1+ùx2)(x1+ùx2+ùx4)(ùx1+ùx2+ùx3+ùx4)(x2+ùx4) (ùx1+x3+ùx4)+(ùx4+x1x2)(ùx1x2x4+x1x2x3x4+ùx2x4+x1ùx3x4)= =x4(ùx1ùx2+ùx1ùx4+x1ùx2+ùx2)(ùx1+ùx2+ùx3+ùx4)(x2+ùx4)(ùx1+x3+ùx4)+ +(ùx4+x1x2)(ùx1x2x4+x1x2x3x4+ùx2x4+x1ùx3x4)=x4(ùx2+ùx1ùx4)(ùx1+ùx2+ +ùx3+ùx4)(ùx1x2+x2x3+x2ùx4+ùx1ùx4+ùx3ùx4+ùx4) +(ùx4+x1x2)(ùx1x2x4+ + x1x2x3x4+ùx2x4+x1ùx3x4)= ùx2x4(ùx1+ùx2+ùx3+ùx4)(ùx1x2+x2x3+ùx4)+ +(ùx4+x1x2)(ùx1x2x4+x1x2x3x4+ùx2x4+x1ùx3x4)=(ùx1ùx2x4+ùx2x4+ +ùx2ùx3x4)(ùx1x2+x2x3+ùx4)+ (ùx4+x1x2) (ùx1x2x4+x1x2x3x4+ùx2x4+ +x1ùx3x4)= ùx2x4(ùx1x2+x2x3+ùx4) +(ùx4+x1x2)(ùx1x2x4 +x1x2x3x4+ùx2x4+ x1ùx3x4)=(ùx4+x1x2)(ùx1x2x4+x1x2x3x4+ùx2x4+x1ùx3x4)=x1x2x3x4+ +x1x2ùx3x4=x1x2x4 y15=y10/y12/y14=((x1+ùx4)(x2+ùx4)(x3+ùx4)+x1(x2+ùx4))/y14= =((x1x2+x1ùx4+x2ùx4+ùx4)+x1x2+x1ùx4)/y14=((x1x2x3+x1x2ùx4+x3ùx4+ùx4)+ +x1x2+x1ùx4)/y14=(x1x2+ùx4)/y14=(ùx1+ùx2)x4+(ùx1+ùx2+ùx4)= =ùx1x4+ùx2x4+ùx1+ùx2+ùx4=ùx1+ùx2+ùx4 y16=y10ù→y13=(ùx1x4+ùx2x4+ùx3x4)x4(ùx1+ùx2+ùx3)= ùx1x4+ùx1ùx2x4+ +ùx1ùx3x4+ùx2x4+ùx1ùx2x4+ùx1ùx3x4+ùx3x4+ùx1ùx3x4+ùx2ùx3x4= =ùx1x4+ùx2x4+ùx3x4 y17=y11~y14=(x1+ùx2+x4)(ùx1+ùx2+ùx3+ùx4)(x2+ùx4)(ùx1+x3+ùx4) (ùx1+ùx2+ùx4)+(ùx1x2x4+x1x2x3x4+ùx2x4+x1ùx3x4)x1x2x4= =(x1ùx2+x1ùx3+x1ùx4+ùx1ùx2+ùx2+ùx2ùx3+ùx2ùx4+ùx1x4+ùx2x4+ùx3x4) (ùx1x2+x2x3+x2ùx4+ùx1ùx4+x3ùx4+ùx4)+x1x2x3x4+x1x2ùx3x4= =ùx2ùx4+x1ùx3ùx4+x1x2x3ùx4+x1ùx4+ùx1x2x4+ùx1x2x3x4+ùx1x2ùx3x4+ +x1x2x3x4+x1x2ùx3x4=ùx2ùx4+x1ùx4+ùx1x2x4+ùx1x2x3x4+ùx1x2ùx3x4+ +x2x4=ùx2ùx4+x1ùx4+x2x4 y18=y15/y17=x1x2x4+(x2+x4)(ùx1+x4)(ùx2+ùx4)=x1x2x4+(ùx1x2+x2x4+ +ùx1x4+x4)(ùx2+ùx4)=x1x2x4+(ùx1x2+x4)(ùx2+ùx4)=x1x2x4+ùx1x2ùx4+ +ùx2x4=ùx1x2ùx4+x1x4+ùx2x4 y19=y16ù→y18 =(ùx1x4+ùx2x4+ùx3x4)(ùx1+ùx2+ùx4)(x1+ùx2+x4)(x2+ùx4)= =(ùx1x4+ùx2x4+ùx3x4)(ùx1+ùx2+ùx4)(x1x2+x1ùx4+ùx2ùx4+x2x4)= =(ùx1x4+ùx2x4+ùx3x4)(ùx1ùx2ùx4+ùx1x2x4+x1ùx2ùx4+ùx2ùx4+x1x2ùx4+ +x1ùx4+ùx2ùx4)= (ùx1x4+ùx2x4+ùx3x4)(ùx1x2x4+ùx2ùx4+x1ùx4)= =ùx1x2x4+ùx1x2ùx3x4=ùx1x2x4 y20=y18=ùx1x2ùx4+x1x4+ùx2x4
Теперь выполним построение сводной таблицы. В левой части таблицы приводятся все возможные наборы из четырех аргументов – от нулевого до пятнадцатого, а в правой – значения функции для каждого элемента логической схемы.
Формула ùx1x2ùx4+x1x4+ùx2x4,полученная для всей таблицы, записана в виде ДНФ. Для перевода ее в СДНФ, введем единицы для недостающих элементов в каждый минитерм:
СДНФ=(x3+ùx3)(x2+ùx2) x1x4+(x3+ùx3) ùx1x2ùx4+(x3+ùx3)(x1+ùx1)ùx2x4= =x1x2x3x4+x1x2ùx3x4+ùx1x2x3ùx4+ùx1x2ùx3ùx4+x1ùx2x3x4+x1ùx2ùx3x4+ +ùx1ùx2x3x4+ùx1ùx2ùx3x4 Выполним перевод из CДНФ в CКНФ: CКНФ=(ùx1+ùx2+ùx3+ùx4)(ùx1+ùx2+x3+ùx4)(x1+ùx2+ùx3+x4)(x1+ùx2+x3+x4) (ùx1+x2+ùx3+ùx4)(ùx1+x2+x3+ùx4)(x1+x2+ùx3+ùx4)(x1+x2+x3+ùx4) Задание № 4 Минимизация методами Квайна-МакКласки и Петрика, а также с помощью карт Карно булевой функции по исходной таблице истинности, полученной в п.4
Дата добавления: 2014-12-23; Просмотров: 645; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |