Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Векторний добуток векторів




Скалярний добуток векторів

Означення. Скалярним добутком двох векторів і називається число (скаляр), яке дорівнює сумі добутків їх відповідних координат.

Отже,

Теорема. Скалярний добуток двох ненульових векторів і дорівнює добутку модулів цих векторів на косинус кута між ними. Якщо хоча б один із векторів дорівнює нулю, то кут між векторами не визначений і за означенням скалярний добуток дорівнює нулю.

,

де j — кут між векторами. Використовуючи формулу проекції вектора, можна також записати:

.

Наслідок: Кут між двома векторами і можна знайти за формулою:

.

Властивості скалярного добутку:

1. . 4. .

2. . 5. якщо і навпаки,

3. . якщо .

Означення. Векторним добутком вектора на вектор називається вектор

З означення випливає:

1) довжина вектора , де j — кут між двома векторами;

2) вектор перпендикулярний до кожного з векторів і

Рис. 3.2

3) вектор спрямований так, що коли дивитися з його кінця на площину, в якій лежать вектори і , то поворот вектора до вектора відбувається на найменший кут проти годинникової стрілки.

Геометричний зміст: Модуль векторного добутку двох неколінеарних векторів дорівнює площі паралелограма, побудованого на векторах як на сторонах.

Властивості векторного добутку:

1. , якщо і — колінеарні вектори.

2. .

3. .

4. .

Якщо вектори-множники взаємно перпендикулярні, то модуль векторного добутку дорівнює добутку модулів співмножників:

якщо .

Якщо вектори-множники колінеарні, то і векторний добуток їх дорівнює нуль-вектору, тобто

.

Знайдемо векторні добутки одиничних векторів . З колінеарності векторів випливає: . З того, що одиничні вектори збігаються з напрямом осей прямокутної системи координат, маємо:

Механічний зміст: Якщо є вектор сили, прикладеної до деякої точки В, а вектор , спрямований з точки А в точку В, то векторний добуток буде моментом сили відносно точки А.




Поделиться с друзьями:


Дата добавления: 2014-12-24; Просмотров: 2842; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.