КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теоретические сведения. В измерительной практике для уменьшения влияния случайных погрешностей на результат измерения проводят измерения с многоразовыми наблюдениями
В измерительной практике для уменьшения влияния случайных погрешностей на результат измерения проводят измерения с многоразовыми наблюдениями, а затем статистически обрабатывают полученные результаты. При этом могут быть использованы различные процедуры обработки. Равноточными называются измерения, которые проводятся средствами измерений одинаковой точности по одной и той же методике при неизменных внешних условиях. Результат измерения содержит погрешность, представляющую сумму систематической составляющей DС и случайной составляющей : . Эти две составляющие погрешности резко отличаются по своим свойствам. Систематическая погрешность DС остается постоянной или изменяется по определенному закону при повторных измерениях одной и той же физической величины. Она является математическим ожиданием погрешности D измерения .
Обнаружение систематической погрешности – трудоемкая операция и может быть выполнена несколькими способами: 1) Проверка данного измерительного прибора с помощью образцового (более точного). При измерении одной и той же физической величины измерительным и образцовым приборами получают разные показания: X раб и X обр. Их разность является абсолютной систематической погрешностью прибора: . Тогда показания рабочего прибора корректируются введением поправки П, численно равной . При этом за результат измерения необходимо принимать величину . 2) Метод замещения. В этом случае измеряемая величина заменятся известной величиной таким образом, чтобы показание прибора осталось неизменным. Тогда результат измерения . 3) Метод компенсации по знаку применяется при направленном действии причины, вызывающей систематическую погрешность. Выполняют измерения так, чтобы погрешность входила с разными знаками в формулы ; , тогда . Переменные систематические погрешности разделяют на прогрессирующие и периодические. Для устранения этих составляющих необходимо найти функциональную связь погрешности и влияющего фактора и вводить поправку на основании полученных зависимостей. Сложную задачу по выявлению и исключению систематической погрешности не всегда удается довести до конца и поэтому остается неисключенная часть систематической погрешности. Нетрудно убедиться, что результат измерения – случайная величина. Таким образом, случайная погрешность изменяется нерегулярно, непредсказуемо при повторных измерениях. Она вызывается большим количеством причин, характер и размер влияния которых на измеряемую величину при единичном измерении не может быть определен. Однако путем выполнения многократных наблюдений и путем обработки результатов наблюдений статистическими методами можно дать оценку этим погрешностям. Вклад в случайную погрешность вносит случайная составляющая погрешности средства измерений. Одной из важнейших характеристик случайной погрешности является закон распределения плотности вероятности – плотность распределения вероятностей или – функция распределения вероятностей. Законы распределения могут быть дискретными (для дискретных случайных величин) и непрерывными (для непрерывных величин). Дискретный закон распределения представляет совокупность значений случайной величины и соответствующих им вероятностей . Условие нормировки закона распределения вероятностей дискретной случайной величины: .
Для непрерывных случайных величин с известным законом распределения вероятность того, что данная случайная величина примет значение в интервале от до , определяется площадью, ограниченной этой кривой и осью абсцисс (рис. 4.1), т.е. . Условие нормировки для непрерывной случайной величины имеет вид:
Рисунок 4.1 – Нормальный закон распределения
Если дестабилизирующих факторов, обуславливающих случайную погрешность много (3 и более), то закон распределения плотности вероятности будет стремиться к гауссовой кривой – нормальному закону распределения (рис. 4.2, а), описываемого соотношением: . Из представленного графика видно: если в состав погрешности входит систематическая составляющая , то закон распределения плотности вероятности будет смещен на эту величину. Если же систематическая погрешность исключена (М[D] = 0), то и максимальное значение такой кривой Гаусса достигается при (рис. 4.2.б).
а) б) Рисунок 4.2 – Кривые Гаусса а) для разных значений систематической составляющей погрешности б) для разных значений среднеквадратического отклонения s. Характер закона распределения изменяется в зависимости от параметров s и s2 (рис. 4.2, б). Дисперсия характеризует рассеяние случайной величины относительно среднего значения. Среднеквадратическое значения отклонения (СКО) . Дисперсия и СКО характеризуют точность измерений. Чем больше s2 и s, тем меньше точность, т.е. больше погрешность измрений. При нормальном законе распределения с вероятность появления случайной погрешности в интервале от –Dгр до +Dгр определяется выражением . При введении нормированной случайной переменной выражение P (D) преобразуется к виду: , где Ф(z) – интеграл вероятности. Доверительная вероятность P дов при заданных граничных значениях погрешности – это вероятность нахождения случайной величины внутри доверительного интервала Dдов (доверительных границ). Доверительная вероятность определяется площадью под кривой (на рис. 4.3 заштрихованная область). Рисунок 4.3 – Доверительная вероятность при заданных граничных значениях погрешности Функция Ф(z) табулирована или определяется по графику (рис. 4.4). Рисунок 4.4 – Функция Лапласа для разных значений нормированной переменной Если задана P дов, то по графику или таблице находят z гр, затем определяют Dгр = z гр×s. Доверительный интервал Dдов = –Dгр … +Dгр, он с заданной вероятностью накрывает истинное значение , Р дов = … В зависимости от целей измерений доверительную вероятность на практике устанавливают Р дов = 0,95 … 0,99. За максимальное значение погрешности, описываемой нормальным законом распределения , принимают интервал Dmax = ±3s, что соответствует вероятности появления в нем погрешности с Р дов = 0,9973. Вероятность того, что погрешность превысит максимальное значение, определяется выражением: , означающим, что погрешность в 369 случаях из 370 попадает в интервал ±3s и лишь в одном случае выходит за эти пределы.
Дата добавления: 2014-12-24; Просмотров: 601; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |